[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

"Learned": Operating Systems

Published: 25 July 2019 Publication History

Abstract

With operating systems being at the core of computer systems, decades of research and engineering efforts have been put into the development of OSes. To keep pace with the speed of modern hardware and application evolvement, we argue that a different approach should be taken in future OS development. Instead of relying solely on human wisdom, we should also leverage AI and machine learning techniques to automatically "learn" how to build and tune an OS. This paper explores the opportunities and challenges of the "learned" OS approach and makes recommendation for future researchers and practitioners on building such an OS.

References

[1]
Audr¯unas Gruslys and Remi Munos and Ivo Danihelka and Marc Lanctot and Alex Graves. Memoryefficient backpropagation through time. In Proceedings of Conference on Neural Information Processing Systems (NeurIPS), 2016.
[2]
A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo, T. Massengill, K. Ovtcharov, M. Papamichael, L.Woods, S. Lanka, D. Chiou, and D. Burger. A cloud-scale acceleration architecture. In 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2016.
[3]
V. Duddu, D. Samanta, D. V. Rao, and V. E. Balas. Stealing neural networks via timing side channels. arXiv preprint arXiv:1812.11720, 2018.
[4]
A. Eisenman, D. Gardner, I. AbdelRahman, J. Axboe, S. Dong, K. M. Hazelwood, C. Petersen, A. Cidon, and S. Katti. Reducing dram footprint with nvm in facebook. In Proceedings of the Thirteenth EuroSys Conference, 2018.
[5]
D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. Andrewartha, H. Angepat, V. Bhanu, A. M. Caulfield, E. S. Chung, H. K. Chandrappa, S. Chaturmohta, M. Humphrey, J. Lavier, N. Lam, F. Liu, K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel, T. Sapre, M. Shaw, G. Silva, M. Sivakumar, N. Srivastava, A. Verma, Q. Zuhair, D. Bansal, D. Burger, K. Vaid, D. A. Maltz, and A. G. Greenberg. Azure accelerated networking: Smartnics in the public cloud. In 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18), 2018.
[6]
L. Guo, S. Zhai, Y. Qiao, and F. X. Lin. Transkernel: An executor for commodity kernels on peripheral cores. In 2019 USENIX Annual Technical Conference (USENIX ATC 19), 2019.
[7]
M. Hashemi, K. J. Swersky, J. A. Smith, G. Ayers, H. Litz, J. Chang, C. Kozyrakis, and P. Ranganathan. Learning memory access patterns. international conference on machine learning, pages 1919--1928, 2018.
[8]
N. P. Jouppi, C. Young, N. Patil, D. A. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. K. Bhatia, N. Boden, A. Borchers, R. Boyle, P. luc Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati,W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon. Indatacenter performance analysis of a tensor processing unit. In 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA), 2017.
[9]
A. Kalia, M. Kaminsky, and D. G. Andersen. Design guidelines for high performance rdma systems. In USENIX ATC '16 Proceedings of the 2016 USENIX Conference on Usenix Annual Technical Conference, 2016.
[10]
A. Khawaja, J. Landgraf, R. Prakash, M. Wei, E. Schkufza, and C. J. Rossbach. Sharing, protection, and compatibility for reconfigurable fabric with amorphos. In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18), 2018.
[11]
T. Kraska, M. Alizadeh, A. Beutel, E. H. hsin Chi, A. Kristo, G. Leclerc, S. Madden, H. Mao, and V. Nathan. Sagedb: A learned database system. In Proceedings of the 9th Biennial Conference on Innovative Data Systems Research (CIDR), 2019.
[12]
T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The case for learned index structures. In Proceedings of the 2018 International Conference on Management of Data, 2018.
[13]
A. Laga, J. Boukhobza, M. Koskas, and F. Singhoff. Lynx: a learning linux prefetching mechanism for ssd performance model. In 2016 5th Non-Volatile Memory Systems and Applications Symposium (NVMSA), 2016.
[14]
C. Lee, D. Sim, J. Y. Hwang, and S. Cho. F2fs: a new file system for flash storage. In FAST'15 Proceedings of the 13th USENIX Conference on File and Storage Technologies, 2015.
[15]
M. Mitzenmacher. A model for learned bloom filters and optimizing by sandwiching. neural information processing systems, pages 464--473, 2018.
[16]
A. Negi and K. Kishore. Applying machine learning techniques to improve linux process scheduling. In TENCON 2005 - 2005 IEEE Region 10 Conference, 2005.
[17]
Quoc Le and Barret Zoph. Using machine learning to explore neural network architecture. https://ai.googleblog. com/2017/05/using-machine-learning-to-explore.html, 2017.
[18]
C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and D. Fetterly. Dandelion: a compiler and runtime for heterogeneous systems. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, 2013.
[19]
W. Smith, I. T. Foster, and V. E. Taylor. Predicting application run times using historical information. job scheduling strategies for parallel processing, pages 122-- 142, 1998.
[20]
Q. Xu, H. Siyamwala, M. Ghosh, T. Suri, M. Awasthi, Z. Guz, A. Shayesteh, and V. Balakrishnan. Performance analysis of nvme ssds and their implication on real world databases. In Proceedings of the 8th ACM International

Cited By

View all
  • (2024)AutoOSProceedings of the 41st International Conference on Machine Learning10.5555/3692070.3692362(7511-7525)Online publication date: 21-Jul-2024
  • (2023)Conflux: Exploiting Persistent Memory and RDMA Bandwidth via Adaptive I/O Mode SelectionProceedings of the 52nd International Conference on Parallel Processing10.1145/3605573.3605574(685-694)Online publication date: 7-Aug-2023
  • (2023)Towards a Machine Learning-Assisted Kernel with LAKEProceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 210.1145/3575693.3575697(846-861)Online publication date: 27-Jan-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM SIGOPS Operating Systems Review
ACM SIGOPS Operating Systems Review  Volume 53, Issue 1
July 2019
90 pages
ISSN:0163-5980
DOI:10.1145/3352020
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 25 July 2019
Published in SIGOPS Volume 53, Issue 1

Check for updates

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)142
  • Downloads (Last 6 weeks)11
Reflects downloads up to 15 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)AutoOSProceedings of the 41st International Conference on Machine Learning10.5555/3692070.3692362(7511-7525)Online publication date: 21-Jul-2024
  • (2023)Conflux: Exploiting Persistent Memory and RDMA Bandwidth via Adaptive I/O Mode SelectionProceedings of the 52nd International Conference on Parallel Processing10.1145/3605573.3605574(685-694)Online publication date: 7-Aug-2023
  • (2023)Towards a Machine Learning-Assisted Kernel with LAKEProceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 210.1145/3575693.3575697(846-861)Online publication date: 27-Jan-2023
  • (2023)DongTingJournal of Systems and Software10.1016/j.jss.2023.111745203:COnline publication date: 13-Jul-2023
  • (2022)Towards a fully disaggregated and programmable data centerProceedings of the 13th ACM SIGOPS Asia-Pacific Workshop on Systems10.1145/3546591.3547527(18-28)Online publication date: 23-Aug-2022
  • (2022)HatchFuture Generation Computer Systems10.1016/j.future.2022.02.008132:C(80-92)Online publication date: 1-Jul-2022
  • (2021)Toward reconfigurable kernel datapaths with learned optimizationsProceedings of the Workshop on Hot Topics in Operating Systems10.1145/3458336.3465288(175-182)Online publication date: 1-Jun-2021
  • (2021)Operating Systems for Resource-adaptive Intelligent Software: Challenges and OpportunitiesACM Transactions on Internet Technology10.1145/342586621:2(1-19)Online publication date: 15-Mar-2021
  • (2020)Learned Data StructuresRecent Trends in Learning From Data10.1007/978-3-030-43883-8_2(5-41)Online publication date: 4-Apr-2020

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media