[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article
Free access

Chow Parameters in Threshold Logic

Published: 01 April 1971 Publication History
First page of PDF

References

[1]
CHow, C. K. On the characterization of threshold functions. In Switching Circuit Theory and Logical Design, IEEE Special Publication S-134 (Sep. 1961), 34-38.
[2]
COLEMAN, R .P . Orthogonal functions for the logical design of switching circuits. IRE Trans. EC10 (Sep. 1961), 379-383.
[3]
DERTOUZOS, M. L. An approach to single threshold element synthesis. IEEE Trans. EC18 (Oct. 1964), 519-528; {Erratum: IEEE Trans. EC14 (Apr. 1965), 247}.
[4]
DERTOUZOS, M.L. Threshold-element synthesis. Ph.D. Diss., Dep. of Elec. Eng., MIT, Cambridge, Mass. (June 1964).
[5]
DERTOUZOS, M. L. Threshold Logic: A Synthesis Approach, MIT Press, Cambridge, Mass., 1965
[6]
GABELMAN, I .J . The functional behavior of majority (threshold) elements. Ph.D. Diss., Dep. of Elec. Eng., Syracuse U., Syracuse, N.Y. (June 1961).
[7]
GOLOMB, S. W. On the classification of Boolean functions. IRE Trans. CT6 (Suppl.) (May 1959), 176-186.
[8]
GoTo, E. AND TAKAHASI, H. Some theorems useful in threshold logic for enumerating Boolean functions. In Information Processing 62, North Holland, Amsterdam, 1963, pp. 747-752; or Threshold, majority and bilateral switching devices. In Switching Theory in Space Technology, Stanford Univ. Press, 1963, pp. 47-67.
[9]
HAWKINS, J. K. Self-organizing systems--A review and commentary. Proc. IRE le9 (Jan. 1961), 31-48.
[10]
Hu, SzE-TsEN. Threshold Logic. U. of Cal. Press, Berkeley, Cal., 1965.
[11]
KAPLAN, K. R. AND WINDER, R.O. Chebyshev approximation and threshold functions. IEEE Trans. EC14 (Apr. 1965), 250-252.
[12]
KASZERMAN, P. On the synthesis of threshold devices. Ph.D. Diss., Dep. of Elee. Eng., New York U., New York (Sep. 1963).
[13]
KASZERMAN, P. A geometric test-synthesis procedure for a threshold device. Inform. Control 6, 10 (Dec. 1963), 381-398.
[14]
LEVINE, E. On the characterizing parameters of a threshold function. IEEE Trans. C17, (July 1968), 696-697.
[15]
LIU, MING-TsAu. The triquare map method for realization of threshold functions. Ph.D. Diss., Dep. of Elec. Eng., U. of Pennsylvania (June 1964).
[16]
MUROGA, S., TODA, I., AND TAKASU, S. Theory of majority decision elements. JFI 271 (May 1961), 376-418.
[17]
NINOMIYA, ICHIZO. A study of the structures of Boolean functions and its application to the synthesis of switching circuits. Mere. Faculty Eng. (Nagoya U.) 13, 2 (Nov. 1961), 149-363.
[18]
WINDER, R.O. Threshold logic. Ph.D. Diss., Dep. of Math, Princeton U. (May 1962).
[19]
WINDER, R. O. Threshold logic in artificial intelligence. In Artificial Intelligence, IEEE Publication S-142 (Jan. 1963), 107-128.
[20]
WINDER, R.O. Properties of threshold functions. IEEE Trans. EC14 (Apr. 1965), 252- 254.
[21]
WINDER, R.O. Enumeration of seven-argument threshold functions. IEEE Trans. EC14 (June 1965), 315-325.
[22]
WINDER, R.O. Threshold functions through n = 7. Scientific Report No. 7 for AFCRL on contract with RCA Laboratories, AF 19 "(604)8423, available through DDC and the IEEE Computer group repository, October 1964.
[23]
WINDER, R.O. Symmetry types in threshold logic. IEEE Trans. C17 (Jan. 1968), 75-78.
[24]
WINDER, R.O. Threshold gate approximations based on Chow parameters. IEEE Trans. C18 (Apr. 1969), 372-375.
[25]
WINDER, R.O. Threshold logic asymptotes. IEEE Trans. C19 (Apr. 1970), 349-353.

Cited By

View all
  • (2020)Computational Hardness of Collective Coin-Tossing ProtocolsEntropy10.3390/e2301004423:1(44)Online publication date: 30-Dec-2020
  • (2019)Testing halfspaces over rotation-invariant distributionsProceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3310435.3310479(694-713)Online publication date: 6-Jan-2019
  • (2017)A Simple and Effective Heuristic Method for Threshold Logic IdentificationIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems10.1109/TCAD.2017.2729403(1-1)Online publication date: 2017
  • Show More Cited By

Index Terms

  1. Chow Parameters in Threshold Logic

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Journal of the ACM
      Journal of the ACM  Volume 18, Issue 2
      April 1971
      192 pages
      ISSN:0004-5411
      EISSN:1557-735X
      DOI:10.1145/321637
      Issue’s Table of Contents

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 01 April 1971
      Published in JACM Volume 18, Issue 2

      Permissions

      Request permissions for this article.

      Check for updates

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)90
      • Downloads (Last 6 weeks)8
      Reflects downloads up to 12 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2020)Computational Hardness of Collective Coin-Tossing ProtocolsEntropy10.3390/e2301004423:1(44)Online publication date: 30-Dec-2020
      • (2019)Testing halfspaces over rotation-invariant distributionsProceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3310435.3310479(694-713)Online publication date: 6-Jan-2019
      • (2017)A Simple and Effective Heuristic Method for Threshold Logic IdentificationIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems10.1109/TCAD.2017.2729403(1-1)Online publication date: 2017
      • (2014)Nearly Optimal Solutions for the Chow Parameters Problem and Low-Weight Approximation of HalfspacesJournal of the ACM10.1145/259077261:2(1-36)Online publication date: 24-Apr-2014
      • (2012)An efficient heuristic to identify threshold logic functionsACM Journal on Emerging Technologies in Computing Systems10.1145/2287696.22877028:3(1-17)Online publication date: 15-Aug-2012
      • (2012)Nearly optimal solutions for the chow parameters problem and low-weight approximation of halfspacesProceedings of the forty-fourth annual ACM symposium on Theory of computing10.1145/2213977.2214043(729-746)Online publication date: 19-May-2012
      • (2011)The Chow Parameters ProblemSIAM Journal on Computing10.1137/09075646640:1(165-199)Online publication date: 1-Feb-2011
      • (2008)The chow parameters problemProceedings of the fortieth annual ACM symposium on Theory of computing10.1145/1374376.1374450(517-526)Online publication date: 17-May-2008
      • (2007)Every Linear Threshold Function has a Low-Weight ApproximatorComputational Complexity10.1007/s00037-007-0228-716:2(180-209)Online publication date: 1-May-2007
      • (2006)A Bound on the Precision Required to Estimate a Boolean Perceptron from Its Average Satisfying AssignmentSIAM Journal on Discrete Mathematics10.1137/S089548010342676520:2(328-343)Online publication date: 1-Feb-2006
      • Show More Cited By

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Login options

      Full Access

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media