[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3205651.3207889acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
tutorial

Theory for non-theoreticians: tutorial

Published: 06 July 2018 Publication History
First page of PDF

References

[1]
{AD11} Anne Auger and Benjamin Doerr. Theory of Randomized Search Heuristics. World Scientific, 2011.
[2]
{ADFH18} Denis Antipov, Benjamin Doerr, Jiefeng Fang, and Tangi Hétet. Runtime analysis for the (μ + λ) EA optimizing OneMax. In Proc. of Genetic and Evolutionary Computation Conference (GECCO). ACM, 2018. To appear.
[3]
{AL14} Fawaz Alanazi and Per Kristian Lehre. Runtime analysis of selection hyper-heuristics with classical learning mechanisms. In Proc. of Congress on Evolutionary Computation (CEC'14), pages 2515--2523. IEEE, 2014.
[4]
{Bäc93} Thomas Bäck. Optimal mutation rates in genetic search. In Stephanie Forrest, editor, Proc. of International Conference on Genetic Algorithms (ICGA), pages 2--8. Morgan Kaufmann, 1993.
[5]
{BBD<sup>+</sup>09} Surender Baswana, Somenath Biswas, Benjamin Doerr, Tobias Friedrich, Piyush P. Kurur, and Frank Neumann. Computing single source shortest paths using single-objective fitness functions. In Proc. of Foundations of Genetic Algorithms (FOGA), pages 59--66. ACM, 2009.
[6]
{BD17} Maxim Buzdalov and Benjamin Doerr. Runtime analysis of the (1 + (λ, λ)) genetic algorithm on random satisfiable 3-CNF formulas. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 1343--1350. ACM, 2017. Full version available at http://arxiv.org/abs/1704.04366.
[7]
{BDN10} Süntje Böttcher, Benjamin Doerr, and Frank Neumann. Optimal fixed and adaptive mutation rates for the LeadingOnes problem. In Proc. of Parallel Problem Solving from Nature (PPSN), pages 1--10. Springer, 2010.
[8]
{DD15a} Benjamin Doerr and Carola Doerr. Optimal parameter choices through self-adjustment: Applying the 1/5-th rule in discrete settings. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 1335--1342. ACM, 2015.
[9]
{DD15b} Benjamin Doerr and Carola Doerr. A tight runtime analysis of the (1+(λ, λ)) genetic algorithm on OneMax. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 1423--1430. ACM, 2015.
[10]
{DD18} Benjamin Doerr and Carola Doerr. Optimal static and self-adjusting parameter choices for the (1+(λ, λ)) genetic algorithm. Algorithmica, 80:1658--1709, 2018.
[11]
{DDE15} Benjamin Doerr, Carola Doerr, and Franziska Ebel. From black-box complexity to designing new genetic algorithms. Theoretical Computer Science, 567:87--104, 2015.
[12]
{DDK14a} Benjamin Doerr, Carola Doerr, and Timo Kötzing. Unbiased black-box complexities of jump functions: how to cross large plateaus. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 769--776. ACM, 2014.
[13]
{DDK14b} Benjamin Doerr, Carola Doerr, and Timo Kötzing. The unbiased black-box complexity of partition is polynomial. Artificial Intelligence, 216:275--286, 2014.
[14]
{DDST16} Benjamin Doerr, Carola Doerr, Reto Spöhel, and Henning Thomas. Playing mastermind with many colors. J. ACM, 63:42:1--42:23, 2016.
[15]
{DDY16} Benjamin Doerr, Carola Doerr, and Jing Yang. Optimal parameter choices via precise black-box analysis. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 1123--1130. ACM, 2016.
[16]
{DGWY17} Benjamin Doerr, Christian Gießen, Carsten Witt, and Jing Yang. The (1+λ) evolutionary algorithm with self-adjusting mutation rate. In Proc. of Genetic and Evolutionary Computation Conference (GECCO). ACM, 2017. Full version available at http://arxiv.org/abs/1704.02191.
[17]
{DHK07} Benjamin Doerr, Edda Happ, and Christian Klein. A tight analysis of the (1+1)-EA for the single source shortest path problem. In Proc. of Congress on Evolutionary Computation (CEC), pages 1890--1895. IEEE, 2007.
[18]
{DHK08} Benjamin Doerr, Edda Happ, and Christian Klein. Crossover can provably be useful in evolutionary computation. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 539--546. ACM, 2008.
[19]
{DHN06} Benjamin Doerr, Nils Hebbinghaus, and Frank Neumann. Speeding up evolutionary algorithms through restricted mutation operators. In Proc. of Parallel Problem Solving from Nature (PPSN), volume 4193 of Lecture Notes in Computer Science, pages 978--987. Springer, 2006.
[20]
{DJ07} Benjamin Doerr and Daniel Johannsen. Adjacency list matchings: an ideal genotype for cycle covers. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 1203--1210. ACM, 2007.
[21]
{DJ10} Benjamin Doerr and Daniel Johannsen. Edge-based representation beats vertex-based representation in shortest path problems. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 758--766. ACM, 2010.
[22]
{DJK<sup>+</sup>11} Benjamin Doerr, Daniel Johannsen, Timo Kötzing, Per Kristian Lehre, Markus Wagner, and Carola Winzen. Faster black-box algorithms through higher arity operators. In Proc. of Foundations of Genetic Algorithms (FOGA), pages 163--172. ACM, 2011.
[23]
{DJK<sup>+</sup>13} Benjamin Doerr, Daniel Johannsen, Timo Kötzing, Frank Neumann, and Madeleine Theile. More effective crossover operators for the all-pairs shortest path problem. Theoretical Computer Science, 471:12--26, 2013.
[24]
{DJS<sup>+</sup>13} Benjamin Doerr, Thomas Jansen, Dirk Sudholt, Carola Winzen, and Christine Zarges. Mutation rate matters even when optimizing monotonic functions. Evolutionary Computation, 21:1--27, 2013.
[25]
{DJW98} Stefan Droste, Thomas Jansen, and Ingo Wegener. A rigorous complexity analysis of the (1 + 1) evolutionary algorithm for separable functions with Boolean inputs. Evolutionary Computation, 6:185--196, 1998.
[26]
{DJW02} Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science, 276:51--81, 2002.
[27]
{DJW10} Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Multiplicative drift analysis. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 1449--1456. ACM, 2010.
[28]
{DJW12} Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Multiplicative drift analysis. Algorithmica, 64:673--697, 2012.
[29]
{DK15} Benjamin Doerr and Marvin Künnemann. Optimizing linear functions with the (1+λ) evolutionary algorithm - different asymptotic runtimes for different instances. Theoretical Computer Science, 561:3--23, 2015.
[30]
{DKS07} Benjamin Doerr, Christian Klein, and Tobias Storch. Faster evolutionary algorithms by superior graph representation. In Proc. of Symposium on Foundations of Computational Intelligence (FOCI), pages 245--250. IEEE, 2007.
[31]
{DL15} Carola Doerr and Johannes Lengler. Elitist black-box models: Analyzing the impact of elitist selection on the performance of evolutionary algorithms. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 839--846. ACM, 2015.
[32]
{DLMN17} Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. Fast genetic algorithms. In Proc. of Genetic and Evolutionary Computation Conference (GECCO). ACM, 2017. Full version available at http://arxiv.03334.
[33]
{DLOW18} Benjamin Doerr, Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. On the runtime analysis of selection hyper-heuristics with adaptive learning periods. In Proc. of Genetic and Evolutionary Computation Conference (GECCO). ACM, 2018. To appear.
[34]
{DNDD<sup>+</sup>18} Raphaël Dang-Nhu, Thibault Dardinier, Benjamin Doerr, Gautier Izacard, and Dorian Nogneng. A new analysis method for evolutionary optimization of dynamic and noisy objective functions. In Proc. of Genetic and Evolutionary Computation Conference (GECCO). ACM, 2018. To appear.
[35]
{Doe16} Benjamin Doerr. Optimal parameter settings for the (1 + (λ, λ)) genetic algorithm. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 1107--1114. ACM, 2016. Full version available at http://arxiv.org/abs/1604.
[36]
{dPdLDD15} Axel de Perthuis de Laillevault, Benjamin Doerr, and Carola Doerr. Money for nothing: Speeding up evolutionary algorithms through better initialization. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 815--822. ACM, 2015.
[37]
{Dro02} Stefan Droste. Analysis of the (1+1) EA for a dynamically changing OneMax-variant. In Proc. of Congress on Evolutionary Computation (CEC), pages 55--60. IEEE, 2002.
[38]
{DSW13} Benjamin Doerr, Dirk Sudholt, and Carsten Witt. When do evolutionary algorithms optimize separable functions in parallel? In Proc. of Foundations of Genetic Algorithms (FOGA), pages 51--64. ACM, 2013.
[39]
{DT09} Benjamin Doerr and Madeleine Theile. Improved analysis methods for crossover-based algorithms. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 247--254. ACM, 2009.
[40]
{DW12a} B. Doerr and C. Winzen. Memory-restricted black-box complexity of onemax. Information Processing Letters, 112:32--34, 2012.
[41]
{DW12b} B. Doerr and C. Winzen. Reducing the arity in unbiased black-box complexity. In Proc. of the Genetic and Evolutionary Computation Conference (GECCO), pages 1309--1316. ACM, 2012. best paper award theory track.
[42]
{DW14} Benjamin Doerr and Carola Winzen. Ranking-based black-box complexity. Algorithmica, 68:571--609, 2014.
[43]
{DWY18} Benjamin Doerr, Carsten Witt, and Jing Yang. Runtime analysis for self-adaptive mutation rates. In Proc. of Genetic and Evolutionary Computation Conference (GECCO). ACM, 2018. To appear.
[44]
{EHM99} Agoston Endre Eiben, Robert Hinterding, and Zbigniew Michalewicz. Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 3:124--141, 1999.
[45]
{FHH<sup>+</sup>09} Tobias Friedrich, Jun He, Nils Hebbinghaus, Frank Neumann, and Carsten Witt. Analyses of simple hybrid algorithms for the vertex cover problem. Evolutionary Computation, 17:3--19, 2009.
[46]
{FM92} Stephanie Forrest and Melanie Mitchell. Relative building-block fitness and the building block hypothesis. In Proc. of Foundations of Genetic Algorithms (FOGA), pages 109--126. Morgan Kaufmann, 1992.
[47]
{FW04} Simon Fischer and Ingo Wegener. The Ising model on the ring: Mutation versus recombination. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), volume 3102 of Lecture Notes in Computer Science, pages 1113--1124. Springer, 2004.
[48]
{GKS99} Josselin Garnier, Leila Kallel, and Marc Schoenauer. Rigorous hitting times for binary mutations. Evolutionary Computation, 7:173--203, 1999.
[49]
{Gol89} David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., 1989.
[50]
{GP14} Brian W. Goldman and William F. Punch. Parameter-less population pyramid. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 785--792. ACM, 2014.
[51]
{GW15} Christian Gießen and Carsten Witt. Population size vs. mutation strength for the (1+λ) EA on OneMax. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 1439--1446. ACM, 2015.
[52]
{HGAK06} Nikolaus Hansen, Fabian Gemperle, Anne Auger, and Petros Koumoutsakos. When do heavy-tail distributions help? In Proc. of Parallel Problem Solving from Nature (PPSN), volume 4193 of Lecture Notes in Computer Science, pages 62--71. Springer, 2006.
[53]
{HGD94} Jeff Horn, David Goldberg, and Kalyan Deb. Long path problems. In Proc. of Parallel Problem Solving from Nature (PPSN), volume 866 of Lecture Notes in Computer Science, pages 149--158. Springer, 1994.
[54]
{HJKN08} Edda Happ, Daniel Johannsen, Christian Klein, and Frank Neumann. Rigorous analyses of fitness-proportional selection for optimizing linear functions. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 953--960. ACM, 2008.
[55]
{Hol75} John H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.
[56]
{HY01} Jun He and Xin Yao. Drift analysis and average time complexity of evolutionary algorithms. Artificial Intelligence, 127:57--85, 2001.
[57]
{Jäg08} Jens Jägersküpper. A blend of Markov-chain and drift analysis. In Proc. of Parallel Problem Solving from Nature (PPSN), volume 5199 of Lecture Notes in Computer Science, pages 41--51. Springer, 2008.
[58]
{Jan07} Thomas Jansen. On the brittleness of evolutionary algorithms. In Christopher R. Stephens, Marc Toussaint, L. Darrell Whitley, and Peter F. Stadler, editors, Proc. of Foundations of Genetic Algorithms (FOGA), volume 4436 of Lecture Notes in Computer Science, pages 54--69. Springer, 2007.
[59]
{Jan13} Thomas Jansen. Analyzing Evolutionary Algorithms---The Computer Science Perspective. Springer, 2013.
[60]
{JJW05} Thomas Jansen, Kenneth A. De Jong, and Ingo Wegener. On the choice of the offspring population size in evolutionary algorithms. Evolutionary Computation, 13:413--440, 2005.
[61]
{JOZ13} Thomas Jansen, Pietro Simone Oliveto, and Christine Zarges. Approximating vertex cover using edge-based representations. In Proc. of Foundations of Genetic Algorithms (FOGA), pages 87--96. ACM, 2013.
[62]
{JS05} Thomas Jansen and Ulf Schellbach. Theoretical analysis of a mutation-based evolutionary algorithm for a tracking problem in the lattice. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 841--848. ACM, 2005.
[63]
{JW99} Thomas Jansen and Ingo Wegener. On the analysis of evolutionary algorithms - A proof that crossover really can help. In Proc. of European Symposium of Algorithms (ESA), volume 1643 of Lecture Notes in Computer Science, pages 184--193. Springer, 1999.
[64]
{JW00} Thomas Jansen and Ingo Wegener. On the choice of the mutation probability for the (1+1) EA. In Proc. of Parallel Problem Solving from Nature (PPSN), volume 1917 of Lecture Notes in Computer Science, pages 89--98. Springer, 2000.
[65]
{JW05} Thomas Jansen and Ingo Wegener. Real royal road functions-where crossover provably is essential. Discrete Applied Mathematics, 149:111--125,2005.
[66]
{JW06} Thomas Jansen and Ingo Wegener. On the analysis of a dynamic evolutionary algorithm. Journal of Discrete Algorithms, 4:181--199, 2006.
[67]
{KHE15} Giorgos Karafotias, Mark Hoogendoorn, and Ágoston E. Eiben. Parameter control in evolutionary algorithms: Trends and challenges. IEEE Transactions on Evolutionary Computation, 19:167--187, 2015.
[68]
{KM12} Timo Kötzing and Hendrik Molter. ACO beats EA on a dynamic pseudo-boolean function. In Proc. of Parallel Problem Solving from Nature (PPSN), volume 7491 of Lecture Notes in Computer Science, pages 113--122. Springer, 2012.
[69]
{LOW17} Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. On the runtime analysis of generalised selection hyper-heuristics for pseudo-Boolean optimisation. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 849--856. ACM, 2017.
[70]
{LS11} Jörg Lässig and Dirk Sudholt. Adaptive population models for offspring populations and parallel evolutionary algorithms. In Proc. of Foundations of Genetic Algorithms (FOGA), pages 181--192. ACM, 2011.
[71]
{LW12} Per Kristian Lehre and Carsten Witt. Black-box search by unbiased variation. Algorithmica, 64:623--642, 2012.
[72]
{LW14} Andrei Lissovoi and Carsten Witt. MMAS vs. population-based EA on a family of dynamic fitness functions. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 1399--1406. ACM, 2014.
[73]
{LW15} Andrei Lissovoi and Carsten Witt. Runtime analysis of ant colony optimization on dynamic shortest path problems. Theoretical Computer Science, 561:73--85, 2015.
[74]
{Müh92} Heinz Mühlenbein. How genetic algorithms really work: Mutation and hillclimbing. In Proc. of Parallel Problem Solving from Nature (PPSN), pages 15--26. Elsevier, 1992.
[75]
{Neu04} Frank Neumann. Expected runtimes of evolutionary algorithms for the eulerian cycle problem. In Proc. of Congress on Evolutionary Computation (CEC), pages 904--910. IEEE, 2004.
[76]
{NOW09} Frank Neumann, Pietro Simone Oliveto, and Carsten Witt. Theoretical analysis of fitness-proportional selection: landscapes and efficiency. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 835--842. ACM, 2009.
[77]
{NW07} Frank Neumann and Ingo Wegener. Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. Theoretical Computer Science, 378:32--40, 2007.
[78]
{NW10} Frank Neumann and Carsten Witt. Bioinspired Computation in Combinatorial Optimization - Algorithms and Their Computational Complexity. Springer, 2010.
[79]
{OHY09} Pietro Simone Oliveto, Jun He, and Xin Yao. Analysis of the (1+1)-EA for finding approximate solutions to vertex cover problems. IEEE Transactions on Evolutionary Computation, 13:1006--1029, 2009.
[80]
{OW15} Pietro Simone Oliveto and Carsten Witt. Improved time complexity analysis of the simple genetic algorithm. Theoretical Computer Science, 605:21--41, 2015.
[81]
{OZ15} Pietro Simone Oliveto and Christine Zarges. Analysis of diversity mechanisms for optimisation in dynamic environments with low frequencies of change. Theoretical Computer Science, 561:37--56, 2015.
[82]
{Pos09} Petr Posik. BBOB-benchmarking a simple estimation of distribution algorithm with Cauchy distribution. In GECCO (Companion), pages 2309--2314. ACM, 2009.
[83]
{Pos10} Petr Posík. Comparison of Cauchy EDA and BIPOP-CMA-ES algorithms on the BBOB noiseless testbed. In GECCO (Companion), pages 1697--1702. ACM, 2010.
[84]
{PPHST15} Tiago Paixao, Jorge Pérez Heredia, Dirk Sudholt, and Barbora Trubenova. First steps towards a runtime comparison of natural and artificial evolution. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 1455--1462. ACM, 2015.
[85]
{Rud97} Günter Rudolph. Convergence Properties of Evolutionary Algorithms. Kovac, 1997.
[86]
{SGS11} Tom Schaul, Tobias Glasmachers, and Jürgen Schmidhuber. High dimensions and heavy tails for natural evolution strategies. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 845--852. ACM, 2011.
[87]
{SH87} Harold H. Szu and Ralph L. Hartley. Fast simulated annealing. Physics Letters A, 122:157--162, 1987.
[88]
{Sto06} Tobias Storch. How randomized search heuristics find maximum cliques in planar graphs. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 567--574. ACM, 2006.
[89]
{STW04} Jens Scharnow, Karsten Tinnefeld, and Ingo Wegener. The analysis of evolutionary algorithms on sorting and shortest paths problems. Journal of Mathematical Modelling and Algorithms, 3:349--366, 2004.
[90]
{Sud05} Dirk Sudholt. Crossover is provably essential for the Ising model on trees. In Proc. of Genetic and Evolutionary Computation Conference (GECCO). ACM, 2005.
[91]
{SW04} Tobias Storch and Ingo Wegener. Real royal road functions for constant population size. Theoretical Computer Science, 320:123--134, 2004.
[92]
{Wit05} Carsten Witt. Worst-case and average-case approximations by simple randomized search heuristics. In Proc. of Symposium on Theoretical Aspects of Computer Science (STACS), pages 44--56. Springer, 2005.
[93]
{Wit06} Carsten Witt. Runtime analysis of the (&mu; + 1) EA on simple pseudo-Boolean functions. Evolutionary Computation, 14:65--86, 2006.
[94]
{Wit13} Carsten Witt. Tight bounds on the optimization time of a randomized search heuristic on linear functions. Combinatorics, Probability & Computing, 22:294--318, 2013.
[95]
{Wit14} Carsten Witt. Revised analysis of the (1+1) EA for the minimum spanning tree problem. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 509--516. ACM, 2014.
[96]
{YL97} Xin Yao and Yong Liu. Fast evolution strategies. In Evolutionary Programming, volume 1213 of Lecture Notes in Computer Science, pages 151--162. Springer, 1997.
[97]
{YLL99} Xin Yao, Yong Liu, and Guangming Lin. Evolutionary programming made faster. IEEE Trans. Evolutionary Computation, 3:82--102, 1999.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
GECCO '18: Proceedings of the Genetic and Evolutionary Computation Conference Companion
July 2018
1968 pages
ISBN:9781450357647
DOI:10.1145/3205651
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 06 July 2018

Check for updates

Qualifiers

  • Tutorial

Conference

GECCO '18
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 138
    Total Downloads
  • Downloads (Last 12 months)2
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Dec 2024

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media