[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3297280.3299732acmconferencesArticle/Chapter ViewAbstractPublication PagessacConference Proceedingsconference-collections
research-article

Efficient spatio-temporal RDF query processing in large dynamic knowledge bases

Published: 08 April 2019 Publication History

Abstract

An ever-increasing number of real-life applications produce spatiotemporal data that record the position of moving objects (persons, cars, vessels, aircrafts, etc.). In order to provide integrated views with other relevant data sources (e.g., weather, vessel databases, etc.), this data is represented in RDF and stored in knowledge bases with the following notable features: (a) the data is dynamic, since new spatio-temporal data objects are recorded every second, and (b) the size of the data is vast and can easily lead to scalability issues. As a result, this raises the need for efficient management of large-scale, dynamic, spatio-temporal RDF data. In this paper, we propose boosting the performance of spatio-temporal RDF queries by compressing the spatio-temporal information of each RDF entity into a unique integer value. We exploit this encoding in a filter-and-refine framework for processing of spatio-temporal RDF data efficiently. By means of an extensive evaluation on real-life data sets, we demonstrate the merits of our framework.

References

[1]
Ibrahim Abdelaziz, Razen Harbi, Semih Salihoglu, Panos Kalnis, and Nikos Mamoulis. 2015. SPARTex: A Vertex-Centric Framework for RDF Data Analytics. PVLDB 8, 12 (2015), 1880--1891.
[2]
Christophe Claramunt, Cyril Ray, Elena Camossi, Anne-Laure Jousselme, Melita Hadzagic, Gennady L. Andrienko, Natalia V. Andrienko, Yannis Theodoridis, George A. Vouros, and Loïc Salmon. 2017. Maritime data integration and analysis: recent progress and research challenges. In Proceedings of the 20th International Conference on Extending Database Technology, EDBT 2017, Venice, Italy, March 21-24, 2017. 192--197.
[3]
Sairam Gurajada, Stephan Seufert, Iris Miliaraki, and Martin Theobald. 2014. TriAD: A distributed shared-nothing RDF engine based on asynchronous message passing. In Proceedings of SIGMOD. 289--300.
[4]
Mohammad Hammoud, Dania Abed Rabbou, Reza Nouri, Seyed-Mehdi-Reza Beheshti, and Sherif Sakr. 2015. DREAM: Distributed RDF Engine with Adaptive Query Planner and Minimal Communication. PVLDB 8, 6 (2015), 654--665.
[5]
Razen Harbi, Ibrahim Abdelaziz, Panos Kalnis, and Nikos Mamoulis. 2015. Evaluating SPARQL Queries on Massive RDF Datasets. PVLDB 8, 12 (2015), 1848--1851.
[6]
Jiewen Huang, Daniel J. Abadi, and Kun Ren. 2011. Scalable SPARQL Querying of Large RDF Graphs. PVLDB 4, 11 (2011), 1123--1134.
[7]
Christian S. Jensen, Dan Lin, and Beng Chin Ooi. 2004. Query and Update Efficient B+-Tree Based Indexing of Moving Objects. In (e)Proceedings of the Thirtieth International Conference on Very Large Data Bases, Toronto, Canada, August 31 - September 3 2004. 768--779.
[8]
Christian S. Jensen, Dalia Tiesyte, and Nerius Tradisauskas. 2006. Robust B+-Tree-Based Indexing of Moving Objects. In 7th International Conference on Mobile Data Management (MDM 2006), Nara, Japan, May 9--13, 2006. 12.
[9]
Ibrahim Kamel and Christos Faloutsos. 1994. Hilbert R-tree: An Improved R-tree using Fractals. In VLDB'94, Proceedings of 20th International Conference on Very Large Data Bases, September 12--15, 1994, Santiago de Chile, Chile. 500--509.
[10]
Manolis Koubarakis and Kostis Kyzirakos. 2010. Modeling and Querying Metadata in the Semantic Sensor Web: The Model stRDF and the Query Language stSPARQL. In Proceedings of ESWC. 425--439.
[11]
Kostis Kyzirakos, Manos Karpathiotakis, Konstantina Bereta, George Garbis, Charalampos Nikolaou, Panayiotis Smeros, Stella Giannakopoulou, Kallirroi Dogani, and Manolis Koubarakis. 2013. The Spatiotemporal RDF Store Strabon. In Proceedings of SSTD. 496--500.
[12]
John Liagouris, Nikos Mamoulis, Panagiotis Bouros, and Manolis Terrovitis. 2014. An Effective Encoding Scheme for Spatial RDF Data. PVLDB 7 (2014), 1271--1282.
[13]
Bongki Moon, H. V. Jagadish, Christos Faloutsos, and Joel H. Saltz. 2001. Analysis of the Clustering Properties of the Hilbert Space-Filling Curve. IEEE Trans. Knowl. Data Eng. 13, 1 (2001), 124--141.
[14]
Thomas Neumann and Gerhard Weikum. 2010. The RDF-3X engine for scalable management of RDF data. VLDB J. 19, 1 (2010), 91--113.
[15]
Peng Peng, Lei Zou, M. Tamer Özsu, Lei Chen, and Dongyan Zhao. 2016. Processing SPARQL queries over distributed RDF graphs. VLDB J. 25, 2 (2016), 243--268.
[16]
Matthew Perry, Prateek Jain, and Amit P. Sheth. 2011. SPARQL-ST: Extending SPARQL to Support Spatiotemporal Queries. In Geospatial Semantics and the Semantic Web. 61--86.
[17]
Dong Wang, Lei Zou, Yansong Feng, Xuchuan Shen, Jilei Tian, and Dongyan Zhao. 2013. S-store: An Engine for Large RDF Graph Integrating Spatial Information. In Database Systems for Advanced Applications, 18th International Conference, DASFAA 2013, Wuhan, China, April 22--25, 2013. Proceedings, Part II. 31--47.
[18]
Dong Wang, Lei Zou, and Dongyan Zhao. 2014. g<sup>st</sup>-Store: An Engine for Large RDF Graph Integrating Spatio-temporal Information. In Proceedings of EDBT. 652--655.
[19]
Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. 2008. Hexastore: sextuple indexing for semantic web data management. PVLDB 1, 1 (2008), 1008--1019.
[20]
Kai Zeng, Jiacheng Yang, Haixun Wang, Bin Shao, and Zhongyuan Wang. 2013. A Distributed Graph Engine for Web Scale RDF Data. PVLDB 6, 4 (2013), 265--276.
[21]
Xiaofei Zhang, Lei Chen, Yongxin Tong, and Min Wang. 2013. EAGRE: Towards scalable I/O efficient SPARQL query evaluation on the cloud. In Proceedings of ICDE. 565--576.

Cited By

View all

Index Terms

  1. Efficient spatio-temporal RDF query processing in large dynamic knowledge bases

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SAC '19: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing
    April 2019
    2682 pages
    ISBN:9781450359337
    DOI:10.1145/3297280
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 08 April 2019

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. encoding
    2. query processing
    3. spatio-temporal RDF

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    SAC '19
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 1,650 of 6,669 submissions, 25%

    Upcoming Conference

    SAC '25
    The 40th ACM/SIGAPP Symposium on Applied Computing
    March 31 - April 4, 2025
    Catania , Italy

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)15
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 31 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Path-based approximate matching of fuzzy spatiotemporal RDF dataWorld Wide Web10.1007/s11280-024-01247-627:2Online publication date: 3-Feb-2024
    • (2023)Subgraph Matching of Spatiotemporal RDF DataUncertain Spatiotemporal Data Management for the Semantic Web10.4018/978-1-6684-9108-9.ch006(102-130)Online publication date: 15-Dec-2023
    • (2023)Path-Based Approximate Matching of Spatiotemporal RDF DataUncertain Spatiotemporal Data Management for the Semantic Web10.4018/978-1-6684-9108-9.ch005(81-101)Online publication date: 15-Dec-2023
    • (2023)Spatiotemporal Data Modeling Based on RDFUncertain Spatiotemporal Data Management for the Semantic Web10.4018/978-1-6684-9108-9.ch001(1-43)Online publication date: 15-Dec-2023
    • (2022)Modeling scientometric indicators using a statistical data ontologyJournal of Big Data10.1186/s40537-022-00562-x9:1Online publication date: 24-Jan-2022
    • (2021)Spatiotemporal RDF Data Query Based on Subgraph MatchingISPRS International Journal of Geo-Information10.3390/ijgi1012083210:12(832)Online publication date: 12-Dec-2021
    • (2021)A Survey on Big Data Processing Frameworks for Mobility AnalyticsACM SIGMOD Record10.1145/3484622.348462650:2(18-29)Online publication date: 31-Aug-2021
    • (2021)Riso-Tree: An Efficient and Scalable Index for Spatial Entities in Graph Database Management SystemsACM Transactions on Spatial Algorithms and Systems10.1145/34509457:3(1-39)Online publication date: 16-Jun-2021
    • (2021)A comprehensive overview of RDF for spatial and spatiotemporal data managementThe Knowledge Engineering Review10.1017/S026988892100008436Online publication date: 22-Jun-2021
    • (2021)Parallel and scalable processing of spatio-temporal RDF queries using SparkGeoinformatica10.1007/s10707-019-00371-025:4(623-653)Online publication date: 1-Oct-2021
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media