[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
survey

A Survey of Communication Protocols for Internet of Things and Related Challenges of Fog and Cloud Computing Integration

Published: 28 January 2019 Publication History

Abstract

The fast increment in the number of IoT (Internet of Things) devices is accelerating the research on new solutions to make cloud services scalable. In this context, the novel concept of fog computing as well as the combined fog-to-cloud computing paradigm is becoming essential to decentralize the cloud, while bringing the services closer to the end-system. This article surveys e application layer communication protocols to fulfill the IoT communication requirements, and their potential for implementation in fog- and cloud-based IoT systems. To this end, the article first briefly presents potential protocol candidates, including request-reply and publish-subscribe protocols. After that, the article surveys these protocols based on their main characteristics, as well as the main performance issues, including latency, energy consumption, and network throughput. These findings are thereafter used to place the protocols in each segment of the system (IoT, fog, cloud), and thus opens up the discussion on their choice, interoperability, and wider system integration. The survey is expected to be useful to system architects and protocol designers when choosing the communication protocols in an integrated IoT-to-fog-to-cloud system architecture.

References

[1]
O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes. 2016. Operating systems for low-end devices in the internet of things: A survey. IEEE Internet of Things Journal 3, 5 (Oct. 2016), 720--734.
[2]
Y. Xu, V. Mahendran, W. Guo, and S. Radhakrishnan. 2017. Fairness in fog networks: Achieving fair throughput performance in MQTT-based IoTs. In Proceedings of the 2017 14th IEEE Annual Consumer Communications Networking Conference (CCNC’17). 191--196.
[3]
P. Sethi and Smruti R. Sarangi. 2017. Internet of things: Architectures, protocols, and applications. Journal of Electrical and Computer Engineering (2017), 1--25.
[4]
Alessio Botta, Walter de Donato, Valerio Persico, and Antonio Pescapé. 2014. On the integration of cloud computing and internet of things. In Proceedings of the 2014 International Conference on Future Internet of Things and Cloud (FICLOUD’14). IEEE Computer Society, 23--30.
[5]
C. Huo, T. C. Chien, and P. H. Chou. 2014. Middleware for IoT-Cloud integration across application domains. IEEE Design Test 31, 3 (June 2014), 21--31.
[6]
G. Fortino, A. Guerrieri, W. Russo, and C. Savaglio. 2014. Integration of agent-based and cloud computing for the smart objects-oriented IoT. In Proceedings of the 2014 IEEE 18th International Conference on Computer Supported Cooperative Work in Design (CSCWD’14). 493--498.
[7]
T. Pflanzner and A. Kertesz. 2016. A survey of IoT cloud providers. In Proceedings of the 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO’16). 730--735.
[8]
Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog computing and its role in the internet of things. In Proceedings of the 1st Edition of the MCC Workshop on Mobile Cloud Computing (MCC’12). ACM, New York, 13--16.
[9]
M. Marjani, F. Nasaruddin, A. Gani, A. Karim, I. A. T. Hashem, A. Siddiqa, and I. Yaqoob. 2017. Big IoT data analytics: Architecture, opportunities, and open research challenges. IEEE Access 5 (2017), 5247--5261.
[10]
S. M. Babu, A. J. Lakshmi, and B. T. Rao. 2015. A study on cloud based internet of things: CloudIoT. In Proceedings of the 2015 Global Conference on Communication Technologies (GCCT’15). 60--65.
[11]
M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke. 2016. Middleware for internet of things: A survey. IEEE Internet of Things Journal 3, 1 (Feb. 2016), 70--95.
[12]
S. S. Solapure and H. Kenchannavar. 2016. Internet of things: A survey related to various recent architectures and platforms available. In Proceedings of the 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI’16). 2296--2301.
[13]
J. Granjal, E. Monteiro, and J. Sá Silva. 2015. Security for the internet of things: A survey of existing protocols and open research issues. IEEE Communications Surveys Tutorials 17, 3 (3rd quarter, 2015), 1294--1312.
[14]
A. Al-Fuqaha, A. Khreishah, M. Guizani, A. Rayes, and M. Mohammadi. 2015. Toward better horizontal integration among IoT services. IEEE Communications Magazine 53, 9 (Sept. 2015), 72--79.
[15]
Andrew (PrismTech) Foster. 2014. Messaging Technologies for the Industrial Internet and the Internet of Things. Retrieved February 15, 2018.
[16]
N. Naik. 2017. Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP. In Proceedings of the 2017 IEEE International Systems Engineering Symposium (ISSE’17). 1--7.
[17]
J. Ramirez and C. Pedraza. 2017. Performance analysis of communication protocols for internet of things platforms. In Proceedings of the 2017 IEEE Colombian Conference on Communications and Computing (COLCOM’17). 1--7.
[18]
S. N. Swamy, D. Jadhav, and N. Kulkarni. 2017. Security threats in the application layer in IOT applications. In Proceedings of the 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC’17). 477--480.
[19]
M. B. Yassein, M. Q. Shatnawi, and D. Al-zoubi. 2016. Application layer protocols for the internet of things: A survey. In Proceedings of the 2016 International Conference on Engineering MIS (ICEMIS’16). 1--4.
[20]
L. Nastase. 2017. Security in the internet of things: A survey on application layer protocols. In Proceedings of the 2017 21st International Conference on Control Systems and Computer Science (CSCS’17). 659--666.
[21]
Vasileios Karagiannis, Periklis Chatzimisios, Francisco Vazquez-Gallego, and Jesus Alonso-Zarate. 2015. A survey on application layer protocols for the internet of things. Transaction on IoT and Cloud Computing 3, 1 (2015), 11--17.
[22]
Pavel Masek, Jiri Hosek, Krystof Zeman, Martin Stusek, Dominik Kovac, Petr Cika, Jan Masek, Sergey Andreev, and Franz Kropfl. 2016. Implementation of true IoT vision: Survey on enabling protocols and hands-on experience. International Journal of Distributed Sensor Networks 12, 4 (2016), 8160282.
[23]
OpenFog Consortium. 2016. OpenFog. Retrieved February 2, 2018 from https://www.openfogconsortium.org/.
[24]
Edge Computing Consortium (ECC) and Alliance of Industrial Internet (AII). 2017. Edge computing reference architecture 2.0. Retrieved from http://en.ecconsortium.org/Uploads/file/20180328/1522232376480704.pdf.
[25]
mF2C Consortium. 2017. mF2C project. Retrieved from http://www.mf2c-project.eu/.
[26]
E. Marin-Tordera, Xavi Masip, Jordi Garcia Almiñana, Admela Jukan, Guang-Jie Ren, and Jiafeng Zhu. 2017. Do we all really know what a fog node is? Current trends towards an open definition. Computer Communications. 109 (Sep. 2017), 117--130.
[27]
Y. Jia, E. Bodanese, C. Phillips, J. Bigham, and R. Tao. 2014. Improved reliability of large scale publish/subscribe based MOMs using model checking. In Proceedings of the 2014 IEEE Network Operations and Management Symposium (NOMS’14). 1--8.
[28]
A. Antonić, M. Marjanović, P. Skočir, and I. P. Žarko. 2015. Comparison of the CUPUS middleware and MQTT protocol for smart city services. In Proceedings of the 2015 13th International Conference on Telecommunications (ConTEL’15). 1--8.
[29]
Samia Allaoua Chelloug and Mohamed A. El-Zawawy. 2017. Middleware for internet of things: Survey and challenges. Intelligent Automation 8 Soft Computing 24 (2017), 1--9.
[30]
A. Azzará, S. Bocchino, P. Pagano, G. Pellerano, and M. Petracca. 2013. Middleware solutions in WSN: The IoT oriented approach in the ICSI project. In Proceedings of the 2013 21st International Conference on Software, Telecommunications and Computer Networks (SoftCOM’13). 1--6.
[31]
M. Veeramanikandan and S. Sankaranarayanan. 2017. Publish/subscribe broker based architecture for fog computing. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS’17). 1024--1026.
[32]
G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom, and D. C. Sturman. 1999. An efficient multicast protocol for content-based publish-subscribe systems. In Proceedings of the 19th IEEE International Conference on Distributed Computing Systems (Cat. No.99CB37003). 262--272.
[33]
Annika Hinze, Kai Sachs, and Alejandro Buchmann. 2009. Event-based applications and enabling technologies. In Proceedings of the 3rd ACM International Conference on Distributed Event-Based Systems (DEBS’09). ACM, New York, Article 1, 15 pages.
[34]
Satvik Patel, Sunil Jardosh, Ashwin Makwana, and Amit Thakkar. 2017. Publish/Subscribe mechanism for IoT: A survey of event matching algorithms and open research challenges. In Proceedings of the International Conference on Communication and Networks, Nilesh Modi, Pramode Verma, and Bhushan Trivedi (Eds.). Springer, Singapore, 287--294.
[35]
Kai Sachs, Stefan Appel, Samuel Kounev, and Alejandro Buchmann. 2010. Benchmarking publish/subscribe-based messaging systems. In Database Systems for Advanced Applications, Masatoshi Yoshikawa, Xiaofeng Meng, Takayuki Yumoto, Qiang Ma, Lifeng Sun, and Chiemi Watanabe (Eds.). Springer, Berlin, 203--214.
[36]
A. Kerenen, M. Koster, and J. Jimenez. 2017. Publish-Subscribe Broker for the Constrained Application Protocol. RFC. RFC Editor. 1--23.
[37]
I. Fette and A. Melnikov. 2011. The WebSocket Protocol. RFC 6455. RFC Editor. http://www.rfc-editor.org/rfc/rfc6455.txt.
[38]
S. Cook, B. Mathieu, P. Truong, and I. Hamchaoui. 2017. QUIC: Better for what and for whom? In Proceedings of the 2017 IEEE International Conference on Communications (ICC’17). 1--6.
[39]
Y. Cui, T. Li, C. Liu, X. Wang, and M. Kãihlewind. 2017. Innovating transport with QUIC: Design approaches and research challenges. IEEE Internet Computing 21, 2 (Mar. 2017), 72--76.
[40]
Gaetano Carlucci, Luca De Cicco, and Saverio Mascolo. 2015. HTTP over UDP: An experimental investigation of QUIC. In Proceedings of the 30th Annual ACM Symposium on Applied Computing (SAC’15). ACM, New York, 609--614.
[41]
Roy T. Fielding, James Gettys, Jeffrey C. Mogul, Henrik Frystyk Nielsen, Larry Masinter, Paul J. Leach, and Tim Berners-Lee. 1999. Hypertext Transfer Protocol -- HTTP/1.1. RFC 2616. RFC Editor. http://www.rfc-editor.org/rfc/rfc2616.txt.
[42]
Andrew Banks and Rahul Gupta (Ed.). 29 October 2014. MQTT Version 3.1.1. OASIS Standard. http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html.
[43]
Z. Shelby, K. Hartke, and C. Bormann. 2014. The Constrained Application Protocol (CoAP). RFC 7252. RFC Editor. http://www.rfc-editor.org/rfc/rfc7252.txt.
[44]
OASIS. 29 October 2012. Advanced Message Queuing Protocol (AMQP) Version 1.0. OASIS Standard. http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html.
[45]
Object Management Group (OMG). 2015. Data distribution service (DDS) version 1.4. (March 2015), 1--20.
[46]
P. Saint-Andre. 2004. Extensible Messaging and Presence Protocol (XMPP): Core. RFC 3920. RFC Editor.
[47]
M. Belshe, R. Peon, and M. Thomson. 2015. Hypertext Transfer Protocol Version 2 (HTTP/2). RFC 7540. RFC Editor. http://www.rfc-editor.org/rfc/rfc7540.txt.
[48]
C. Severance. 2015. Roy T. Fielding: Understanding the REST style. Computer 48, 6 (June 2015), 7--9.
[49]
Z. B. Babovic, J. Protic, and V. Milutinovic. 2016. Web performance evaluation for internet of things applications. IEEE Access 4 (2016), 6974--6992.
[50]
W. Shang, Y. Yu, R. E. Droms, and L. Zhang. 2016. Challenges in IoT Networking via TCP/IP Architecture. NDN Project, Technical Report. NDN-00382 (2016), 7.
[51]
T. Dierks and E. Rescorla. 2008. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246. RFC Editor. http://www.rfc-editor.org/rfc/rfc5246.txt.
[52]
K. Bhargavan, B. Blanchet, and N. Kobeissi. 2017. Verified models and reference implementations for the TLS 1.3 standard candidate. In Proceedings of the 2017 IEEE Symposium on Security and Privacy (SP’17). 483--502.
[53]
X. Li, J. Xu, Z. Zhang, D. Feng, and H. Hu. 2016. Multiple handshakes security of TLS 1.3 candidates. In Proceedings of the 2016 IEEE Symposium on Security and Privacy (SP’16). 486--505.
[54]
T. Savolainen, N. Javed, and B. Silverajan. 2014. Measuring energy consumption for RESTful interactions in 3GPP IoT nodes. In Proceedings of the 2014 7th IFIP Wireless and Mobile Networking Conference (WMNC’14). 1--8.
[55]
Daniel Stenberg. 2014. HTTP2 explained. SIGCOMM Computer Communication Review 44, 3 (July 2014), 120--128.
[56]
C. Bormann, S. Lemay, H. Tschofenig, K. Hartke, B. Silverajan, and B. Raymor. 2018. CoAP (Constrained Application Protocol) over TCP, TLS, and WebSockets. RFC 8323. RFC Editor.
[57]
H. V. Nguyen and L. L. Iacono. 2015. REST-ful CoAP message authentication. In Proceedings of the 2015 International Workshop on Secure Internet of Things (SIoT’15). 35--43.
[58]
N. Correia, D. Sacramento, and G. Schãijtz. 2016. Dynamic aggregation and scheduling in CoAP/Observe-Based wireless sensor networks. IEEE Internet of Things Journal 3, 6 (Dec. 2016), 923--936.
[59]
M. Frustaci, P. Pace, G. Aloi, and G. Fortino. 2017. Evaluating critical security issues of the IoT world: Present and Future challenges. IEEE Internet of Things Journal PP, 99 (2017), 1--1.
[60]
E. Rescorla and N. Modadugu. 2012. Datagram Transport Layer Security Version 1.2. RFC 6347. RFC Editor. http://www.rfc-editor.org/rfc/rfc6347.txt.
[61]
M. Panwar and A. Kumar. 2015. Security for IoT: An effective DTLS with public certificates. In Proceedings of the 2015 International Conference on Advances in Computer Engineering and Applications. 163--166.
[62]
S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt. 2013. Lithe: Lightweight secure CoAP for the internet of things. IEEE Sensors Journal 13, 10 (Oct. 2013), 3711--3720.
[63]
S. Raza, D. Trabalza, and T. Voigt. 2012. 6LoWPAN compressed DTLS for CoAP. In Proceedings of the 2012 IEEE 8th International Conference on Distributed Computing in Sensor Systems. 287--289.
[64]
V. Lakkundi and K. Singh. 2014. Lightweight DTLS implementation in CoAP-based internet of things. In Proceedings of the 20th Annual International Conference on Advanced Computing and Communications (ADCOM’14). 7--11.
[65]
Eclipse Mosquitto. 2018. Retrieved March 1, 2018 from http://mosquitto.org/.
[66]
Feng Lee. 2016. EMQ 2.0 Documentation.
[67]
The Apache Software Foundation. 2010. Apache ActiveMQ. Retrieved March 1, 2018 from http://activemq.apache.org/.
[68]
HiveMQ. 2015. HiveMQ - Enterprise MQTT Broker. Retrieved March 1, 2018 from https://www.hivemq.com/.
[69]
Nick Maynard. 2015. MQTT and IBM MessageSight: Secure, reliable communications for the next generation of resilient mobile applications. Retrieved December 20, 2017 from https://www.ibm.com/developerworks/websphere/techjournal/1501_maynard/1501_maynard.htmlf.
[70]
The JoramMQ by ScalAgent. 2017. JoramMQ, a distributed broker for the Internet of Things. Retrieved March 1, 2018 from http://joram.ow2.org/.
[71]
Pivotal Software. 2017. Rabbit MQTT Broker. Retrieved March 1, 2018 from http://www.rabbitmq.com/.
[72]
VerneMQ. 2017. VerneMQ Broker. Retrieved March 1, 2018 from https://vernemq.com/.
[73]
N. Tantitharanukul, K. Osathanunkul, K. Hantrakul, P. Pramokchon, and P. Khoenkaw. 2017. MQTT-Topics management system for sharing of open data. In Proceedings of the 2017 International Conference on Digital Arts, Media and Technology (ICDAMT’17). 62--65.
[74]
J. E. Luzuriaga, J. C. Cano, C. Calafate, P. Manzoni, M. Perez, and P. Boronat. 2015. Handling mobility in IoT applications using the MQTT protocol. In Proceedings of the 2015 Internet Technologies and Applications (ITA’15). 245--250.
[75]
A. Stanford-Clark and H. Linh Troung. 2013. MQTT for sensor networks (MQTT-SN) protocol specification version 1.2. Mqtt.Org (2013). http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN.
[76]
K. Govindan and A. P. Azad. 2015. End-to-end service assurance in IoT MQTT-SN. In Proceedings of the 2015 12th Annual IEEE Consumer Communications and Networking Conference (CCNC’15). 290--296.
[77]
C. Lesjak, D. Hein, M. Hofmann, M. Maritsch, A. Aldrian, P. Priller, T. Ebner, T. Ruprechter, and G. Pregartner. 2015. Securing smart maintenance services: Hardware-security and TLS for MQTT. In Proceedings of the 2015 IEEE 13th International Conference on Industrial Informatics (INDIN’15). 1243--1250.
[78]
A. Corsaro. 2014. The Data Distribution Service Tutorial.
[79]
G. Farabaugh, G. Pardo-Castellote, and R. Warren. 2005. An introduction to DDS and data-centric communications. Real-Time Innovations.August (2005).
[80]
Gustavo B. Baptista, Felipe Carvalho, Sergio Colcher, and Markus Endler. 2001. A middleware for data-centric and dynamic distributed complex event processing for IoT real-time analytics in the cloud.
[81]
J. Yang, K. Sandström, T. Nolte, and M. Behnam. 2012. Data distribution service for industrial automation. In Proceedings of the 2012 IEEE 17th International Conference on Emerging Technologies Factory Automation (ETFA’12). 1--8.
[82]
M. Hamilton, H. Choi, S. Rhee, G. Subramanian, Y. Dai, E. Sin, S. Sonck Thiebaut, G. Pardo-Castellote, and A. Bose. 2002. Real-Time Publish Subscribe (RTPS) Wire Protocol Specification. RFC. RFC Editor.
[83]
J. F. Inglés-Romero, A. Romero-Garcés, C. Vicente-Chicote, and J. Martínez. 2017. A model-driven approach to enable adaptive QoS in DDS-Based middleware. IEEE Transactions on Emerging Topics in Computational Intelligence 1, 3 (June 2017), 176--187.
[84]
Inc Twin Oaks Computing. 2011. What can DDS do for You? (2011). Retrieved January 3, 2018 from https://www.omg.org/hot-topics/documents/dds/CoreDX_DDS_Why_Use_DDS.pdf/.
[85]
S. Pradhan, W. Emfinger, A. Dubey, W. R. Otte, D. Balasubramanian, A. Gokhale, G. Karsai, and A. Coglio. 2014. Establishing secure interactions across distributed applications in satellite clusters. In Proceedings of the 2014 IEEE International Conference on Space Mission Challenges for Information Technology. 67--74.
[86]
Object Management Group (OMG). 2017. OpenDDS Developer’s Guide.
[87]
J. L. Fernandes, I. C. Lopes, J. J. P. C. Rodrigues, and S. Ullah. 2013. Performance evaluation of RESTful web services and AMQP protocol. In Proceedings of the 2013 5th International Conference on Ubiquitous and Future Networks (ICUFN’13). 810--815.
[88]
E. C. M. van der Linden, Jonas Wallgren, and Peter Jonsson. 2017. A latency comparison of IoT protocols in MES.
[89]
A. Hornsby and R. Walsh. 2010. From instant messaging to cloud computing, an XMPP review. In Proceedings of the IEEE International Symposium on Consumer Electronics (ISCE’). 1--6.
[90]
D. Conzon, T. Bolognesi, P. Brizzi, A. Lotito, R. Tomasi, and M. A. Spirito. 2012. The VIRTUS middleware: An XMPP based architecture for secure IoT communications. In Proceedings of the 2012 21st International Conference on Computer Communications and Networks (ICCCN’12). 1--6.
[91]
D. Schuster, P. Grubitzsch, D. Renzel, I. Koren, R. Klauck, and M. Kirsche. 2014. Global-scale federated access to smart objects using XMPP. In Proceedings of the 2014 IEEE International Conference on Internet of Things (iThings), and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom). 185--192.
[92]
X. Che and S. Maag. 2013. A passive testing approach for protocols in internet of things. In Proceedings of the 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing. 678--684.
[93]
A. Hornsby and E. Bail. 2009. μXMPP: Lightweight implementation for low power operating system Contiki. In Proceedings of the 2009 International Conference on Ultra Modern Telecommunications Workshops. 1--5.
[94]
H. Wang, D. Xiong, P. Wang, and Y. Liu. 2017. A lightweight XMPP publish/subscribe scheme for resource-constrained IoT devices. IEEE Access 5 (2017), 16393--16405.
[95]
Istabraq M. Al-Joboury and Emad H. Al-Hemiary. 2018. Performance analysis of internet of things protocols based fog/cloud over high traffic. Journal of Fundamental and Applied Sciences 10, 6S (2018), 176--181. http://www.jfas.info/index.php/jfas/article/view/4236.
[96]
J. Joshi, V. Rajapriya, S. R. Rahul, P. Kumar, S. Polepally, R. Samineni, and D. G. K. Tej. 2017. Performance enhancement and IoT based monitoring for smart home. In Proceedings of the 2017 International Conference on Information Networking (ICOIN). 468--473.
[97]
D. Thangavel, X. Ma, A. Valera, H. X. Tan, and C. K. Y. Tan. 2014. Performance evaluation of MQTT and CoAP via a common middleware. In Proceedings of the 2014 IEEE 9th International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP’14). 1--6.
[98]
N. De Caro, W. Colitti, K. Steenhaut, G. Mangino, and G. Reali. 2013. Comparison of two lightweight protocols for smartphone-based sensing. In Proceedings of the 2013 IEEE 20th Symposium on Communications and Vehicular Technology in the Benelux (SCVT’13). 1--6.
[99]
S. Mijovic, E. Shehu, and C. Buratti. 2016. Comparing application layer protocols for the internet of things via experimentation. In Proceedings of the 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow (RTSI’16). 1--5.
[100]
M. Iglesias-Urkia, A. Orive, M. Barcelo, A. Moran, J. Bilbao, and A. Urbieta. 2017. Towards a lightweight protocol for industry 4.0: An implementation based benchmark. In Proceedings of the 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM’17). 1--6.
[101]
T. Dimčić, S. Krčo, and N. Gligorić. 2012. CoAP (Constrained Application Protocol) implementation in M2M environmental monitoring system. E-society Journal (2012), 229--234.
[102]
M. Saleh, M. A. Abdou, and M. Aboulhassan. 2016. Assessing the use of IP network management protocols in smart grids. In Proceedings of the 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA’16). 1--6.
[103]
W. Gao, J. H. Nguyen, W. Yu, C. Lu, D. T. Ku, and W. G. Hatcher. 2017. Toward emulation-based performance assessment of constrained application protocol in dynamic networks. IEEE Internet of Things Journal 4, 5 (Oct. 2017), 1597--1610.
[104]
Y. Chen and T. Kunz. 2016. Performance evaluation of IoT protocols under a constrained wireless access network. In Proceedings of the 2016 International Conference on Selected Topics in Mobile Wireless Networking (MoWNeT’16). 1--7.
[105]
Laila Daniel, Markku Kojo, and Mikael Latvala. 2014. Experimental evaluation of the CoAP, HTTP and SPDY transport services for internet of things. In Internet and Distributed Computing Systems, Giancarlo Fortino, Giuseppe Di Fatta, Wenfeng Li, Sergio Ochoa, Alfredo Cuzzocrea, and Mukaddim Pathan (Eds.). Springer International Publishing, Cham, 111--123.
[106]
Diego Londoño and Sandra Céspedes. 2016. Performance evaluation of CoAP and HTTP/2 in web applications. CEUR Workshop Proceedings 1727 (2016), 25--27.
[107]
U. Tandale, B. Momin, and D. P. Seetharam. 2017. An empirical study of application layer protocols for IoT. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS’17). 2447--2451.
[108]
S. Bandyopadhyay and A. Bhattacharyya. 2013. Lightweight internet protocols for web enablement of sensors using constrained gateway devices. In Proceedings of the 2013 International Conference on Computing, Networking and Communications (ICNC’13). 334--340.
[109]
P. Thota and Y. Kim. 2016. Implementation and comparison of M2M protocols for internet of things. In Proceedings of the 2016 4th International Conference on Applied Computing and Information Technology/3rd International Conference on Computational Science/Intelligence and Applied Informatics/1st International Conference on Big Data, Cloud Computing, Data Science Engineering (ACIT-CSII-BCD’16). 43--48.
[110]
W. Colitti, K. Steenhaut, N. De Caro, B. Buta, and V. Dobrota. 2011. Evaluation of constrained application protocol for wireless sensor networks. In Proceedings of the 2011 18th IEEE Workshop on Local Metropolitan Area Networks (LANMAN’11). 1--6.
[111]
J. E. Luzuriaga, M. Perez, P. Boronat, J. C. Cano, C. Calafate, and P. Manzoni. 2015. A comparative evaluation of AMQP and MQTT protocols over unstable and mobile networks. In Proceedings of the 2015 12th Annual IEEE Consumer Communications and Networking Conference (CCNC’15). 931--936.
[112]
Qi Jing, Athanasios Vasilakos, Jiafu Wan, Jingwei Lu, and Dechao Qiu. 2014. Security of the internet of things: Perspectives and challenges. Wireless Networks 20, 8 (Nov. 2014), 2481--2501.
[113]
R. T. Tiburski, L. A. Amaral, E. D. Matos, and F. Hessel. 2015. The importance of a standard security architecture for SOA-based IOT middleware. IEEE Communications Magazine 53, 12 (Dec. 2015), 20--26.
[114]
Paul Fremantle and Philip Scott. 2015. A security survey of middleware for the internet of things.
[115]
D. Dragomir, L. Gheorghe, S. Costea, and A. Radovici. 2016. A survey on secure communication protocols for IoT systems. In Proceedings of the 2016 International Workshop on Secure Internet of Things (SIoT’16). 47--62.
[116]
N. J. Al Fardan and K. G. Paterson. 2013. Lucky thirteen: Breaking the TLS and DTLS record protocols. In Proceedings of the 2013 IEEE Symposium on Security and Privacy. 526--540.
[117]
R. T. Tiburski, L. A. Amaral, E. de Matos, D. F. G. de Azevedo, and F. Hessel. 2017. Evaluating the use of TLS and DTLS protocols in IoT middleware systems applied to E-health. In Proceedings of the 2017 14th IEEE Annual Consumer Communications Networking Conference (CCNC’17). 480--485.
[118]
Eclipse IoT Working Group, IEEE IoT, and AGILE IoT. 2016. IoT developer survey. (2016), 1--39. Retrieved December 22, 2017.
[119]
Francisco Carpio, Admela Jukan, Ana Isabel Martín Sanchez, Nina Amla, and Nicole Kemper. 2017. Beyond production indicators: A novel smart farming application and system for animal welfare. In Proceedings of the 4th International Conference on Animal-Computer Interaction (ACI’17). ACM, New York, Article 7, 11 pages.
[120]
Spring Project. Building a RESTful Web Service. ({n.d.}). https://spring.io/guides/gs/rest-service/.
[121]
G. Peralta, M. Iglesias-Urkia, M. Barcelo, R. Gomez, A. Moran, and J. Bilbao. 2017. Fog computing based efficient IoT scheme for the Industry 4.0. In Proceedings of the 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM’17). 1--6.
[122]
P. Desai, A. Sheth, and P. Anantharam. 2015. Semantic gateway as a service architecture for IoT interoperability. In Proceedings of the 2015 IEEE International Conference on Mobile Services. 313--319.
[123]
C. Lerche, N. Laum, F. Golatowski, D. Timmermann, and C. Niedermeier. 2012. Connecting the web with the web of things: Lessons learned from implementing a CoAP-HTTP proxy. In Proceedings of the 2012 IEEE 9th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS’12), Las Vegas. 1--8.
[124]
A. Rahman, T. Fossati, A. Castellani, S. Loreto, and E. Dijk. 2015. Guidelines for HTTP-CoAP Mapping Implementations. RFC. RFC Editor. 1--32 pages.
[125]
F. Van den Abeele, E. Dalipi, I. Moerman, P. Demeester, and J. Hoebeke. 2016. Improving user interactions with constrained devices in the web of things. In Proceedings of the 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT’16). 153--158.
[126]
J. Esquiagola, L. Costa, P. Calcina, and M. Zuffo. 2017. Enabling CoAP into the swarm: A transparent interception CoAP-HTTP proxy for the internet of things. In Proceedings of the 2017 Global Internet of Things Summit (GIoTS’17). 1--6.
[127]
A. B. Sulaeman, F. A. Ekadiyanto, and R. F. Sari. 2016. Performance evaluation of HTTP-CoAP proxy for wireless sensor and actuator networks. In Proceedings of the 2016 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob’16). 68--73.
[128]
N. Le Sommer, L. Touseau, Y. Mahéo, M. Auzias, and F. Raimbault. 2016. A disruption-tolerant RESTful support for the web of things. In Proceedings of the 2016 IEEE 4th International Conference on Future Internet of Things and Cloud (FiCloud’16). 17--24.
[129]
A. P. Castellani, T. Fossati, and S. Loreto. 2012. HTTP-CoAP cross protocol proxy: An implementation viewpoint. In Proceedings of the 2012 IEEE 9th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS’12), Las Vegas, NV. 1--6.
[130]
M. Buschsieweke and M. Güneş. 2017. Authentication for the web of things: Secure end-to-end authentication between CoAP and HTTP. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC’17). 1--5.
[131]
M. Buschsieweke and M. Güneş. 2018. Authentication for the web of things - secure end-to-end authentication between CoAP and HTTP. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC’17).

Cited By

View all
  • (2025)Approximate computing for energy-efficient processing of biosignals in ehealth care systemsNext Generation eHealth10.1016/B978-0-443-13619-1.00008-8(147-161)Online publication date: 2025
  • (2024)O impacto das características da rede no desempenho de protocolos IoTRevista de Gestão e Secretariado10.7769/gesec.v15i5.377315:5(e3773)Online publication date: 7-May-2024
  • (2024)IIoT Protocols for Edge/Fog and Cloud Computing in Industrial AIInternational Journal of Cloud Applications and Computing10.4018/IJCAC.34212814:1(1-30)Online publication date: 15-May-2024
  • Show More Cited By

Index Terms

  1. A Survey of Communication Protocols for Internet of Things and Related Challenges of Fog and Cloud Computing Integration

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Computing Surveys
    ACM Computing Surveys  Volume 51, Issue 6
    November 2019
    786 pages
    ISSN:0360-0300
    EISSN:1557-7341
    DOI:10.1145/3303862
    • Editor:
    • Sartaj Sahni
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 28 January 2019
    Accepted: 01 August 2018
    Revised: 01 July 2018
    Received: 01 April 2018
    Published in CSUR Volume 51, Issue 6

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Internet of things
    2. cloud computing
    3. communication protocols
    4. fog computing
    5. fog-to-cloud

    Qualifiers

    • Survey
    • Research
    • Refereed

    Funding Sources

    • European Union’s H2020 research and innovation programme

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)369
    • Downloads (Last 6 weeks)29
    Reflects downloads up to 12 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)Approximate computing for energy-efficient processing of biosignals in ehealth care systemsNext Generation eHealth10.1016/B978-0-443-13619-1.00008-8(147-161)Online publication date: 2025
    • (2024)O impacto das características da rede no desempenho de protocolos IoTRevista de Gestão e Secretariado10.7769/gesec.v15i5.377315:5(e3773)Online publication date: 7-May-2024
    • (2024)IIoT Protocols for Edge/Fog and Cloud Computing in Industrial AIInternational Journal of Cloud Applications and Computing10.4018/IJCAC.34212814:1(1-30)Online publication date: 15-May-2024
    • (2024)Theories and Models in AIoTArtificial Intelligence of Things (AIoT) for Productivity and Organizational Transition10.4018/979-8-3693-0993-3.ch010(214-239)Online publication date: 23-Feb-2024
    • (2024)A Survey on IoT Programming Platforms: A Business-Domain Experts PerspectiveACM Computing Surveys10.1145/369995457:4(1-37)Online publication date: 14-Oct-2024
    • (2024)Domain-Adaptive TinyML Model for Efficient Pest and Disease Detection in Domestic Crops: A Practical Approach for Developing CountriesProceedings of the 2024 International Conference on Information Technology for Social Good10.1145/3677525.3678639(44-55)Online publication date: 4-Sep-2024
    • (2024)A Lean Simulation Framework for Stress Testing IoT Cloud SystemsIEEE Transactions on Software Engineering10.1109/TSE.2024.3402157(1-24)Online publication date: 2024
    • (2024)An IoMT-Based Wearable Thermography System for Early Breast Cancer DetectionIEEE Transactions on Instrumentation and Measurement10.1109/TIM.2024.343518473(1-17)Online publication date: 2024
    • (2024)Unified Cloud-Based Framework for Hyperspectral and Multispectral Image Fusion Incorporating Nonlocal Principles and Tensor DecompositionIEEE Transactions on Geoscience and Remote Sensing10.1109/TGRS.2024.338531662(1-18)Online publication date: 2024
    • (2024)Adaptive Segmentation: A Tradeoff Between Packet-Size Obfuscation and Performance2024 International Conference on Smart Applications, Communications and Networking (SmartNets)10.1109/SmartNets61466.2024.10577699(1-4)Online publication date: 28-May-2024
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media