[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3292500.3340419acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
invited-talk

Roll of Unified Graph Analysis Platforms

Published: 25 July 2019 Publication History

Abstract

A unified graph engine has been playing increasingly critical roles in many applications, especially for those requiring cross-domain analysis and near real-time decision-making on massive data, aiming to offer integrated and efficient end-to-end capabilities in concurrent graph data query, interactive graph analysis, and large scale graph-based (deep) learning. However, there is barely a unified graph system for enterprise use to the best of our knowledge. Simply assembling some frameworks/libraries together can result in significant performance degradation, due to the sparsity of graph data and irregular data access patterns, which adversely impacts its adoption in industry. In this talk, we will exemplify the challenges using our three efforts on making metropolitan districts smart within an integrated engine, which consist of managing a complex synergy of heterogeneous urban data via property graphs, modeling traffic flow patterns from the stored data through heterogenous information network analysis, and predicting traffics interactively using emerging graph neural networks. Although smart city is projected to become one of the most promising scenarios in the AI era, the unified graph engine can address many other domains such knowledge graph analysis and multi-modality medical research. We will address in the talk the progress towards the above three scientific directions and also point out relevant future research opportunities from the industrial perspective.

Supplementary Material

MP4 File (p3179-xia.mp4)

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
KDD '19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
July 2019
3305 pages
ISBN:9781450362016
DOI:10.1145/3292500
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 25 July 2019

Check for updates

Author Tag

  1. Invited Talk

Qualifiers

  • Invited-talk

Conference

KDD '19
Sponsor:

Acceptance Rates

KDD '19 Paper Acceptance Rate 110 of 1,200 submissions, 9%;
Overall Acceptance Rate 1,133 of 8,635 submissions, 13%

Upcoming Conference

KDD '25

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 148
    Total Downloads
  • Downloads (Last 12 months)2
  • Downloads (Last 6 weeks)0
Reflects downloads up to 15 Jan 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media