[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3241539.3241560acmconferencesArticle/Chapter ViewAbstractPublication PagesmobicomConference Proceedingsconference-collections
research-article
Public Access

Experience: Cross-Technology Radio Respiratory Monitoring Performance Study

Published: 15 October 2018 Publication History

Abstract

This paper addresses the performance of systems which use commercial wireless devices to make bistatic RF channel measurements for non-contact respiration sensing. Published research has typically presented results from short controlled experiments on one system. In this paper, we deploy an extensive real-world comparative human subject study. We observe twenty patients during their overnight sleep (a total of 160 hours), during which contact sensors record ground-truth breathing data, patient position is recorded, and four different RF breathing monitoring systems simultaneously record measurements. We evaluate published methods and algorithms. We find that WiFi channel state information measurements provide the most robust respiratory rate estimates of the four RF systems tested. However, all four RF systems have periods during which RF-based breathing estimates are not reliable.

References

[1]
H. Abdelnasser, K. A. Harras, and M. Youssef. Ubibreathe: A ubiquitous non-invasive WiFi-based breathing estimator. In Proc. of the 16th ACM Int. Symp. on Mobile Ad Hoc Networking and Computing, MobiHoc '15, pages 277--286, 2015.
[2]
F. Adib, H. Mao, Z. Kabelac, D. Katabi, and R. C. Miller. Smart homes that monitor breathing and heart rate. In Proc. of the 33rd Annu. ACM Conf. on Human Factors in Computing Syst., CHI '15, pages 837--846, 2015.
[3]
L. Anitori, A. de Jong, and F. Nennie. FMCW radar for life-sign detection. In 2009 IEEE Radar Conf., pages 1--6, May 2009.
[4]
M. Baboli, O. Boric-Lubecke, and V. Lubecke. A new algorithm for detection of heart and respiration rate with UWB signals. In 2012 Annual Intl. Conf. of the IEEE Engineering in Medicine and Biology Society, pages 3947--3950, Aug 2012.
[5]
M. Baboli, A. Sharafi, A. Ahmadian, and M. Nambakhsh. An accurate and robust algorithm for detection of heart and respiration rates using an impulse based UWB signal. In 2009 Int. Conf. on Biomedical and Pharmaceutical Eng., pages 1--4, Dec 2009.
[6]
T. Ballal, R. B. Shouldice, C. Heneghan, and A. Zhu. Breathing rate estimation from a non-contact biosensor using an adaptive IIR notch filter. In 2012 IEEE Topical Conf. on Biomedical Wireless Technologies, Networks, and Sensing Syst. (BioWireleSS), pages 5--8, Jan 2012.
[7]
K. E. Barrett, S. Boitano, S. M. Barman, and H. L. Brooks. Overview. respiratory physiology. In Ganong's Review of Medical Physiology, 24e, New York, NY, 2012. The McGraw-Hill Companies.
[8]
C. Chen, Y. Han, Y. Chen, H. Q. Lai, F. Zhang, B. Wang, and K. J. R. Liu. TR-BREATH: Time-reversal breathing rate estimation and detection. IEEE Trans. on Biomedical Eng., PP(99):1--1, 2017.
[9]
K. M. Chen, D. Misra, H. Wang, H. R. Chuang, and E. Postow. An X-band microwave life-detection system. IEEE Trans. on Biomedical Engineering, BME-33(7):697--701, July 1986.
[10]
D. Dei, G. Grazzini, G. Luzi, M. Pieraccini, C. Atzeni, S. Boncinelli, G. Camiciottoli, W. Castellani, M. Marsili, and J. Lo Dico. Non-contact detection of breathing using a microwave sensor. Sensors, 9(4):2574--2585, 2009.
[11]
A. D. Droitcour, O. Boric-Lubecke, and G. T. A. Kovacs. Signal-to-noise ratio in Doppler radar system for heart and respiratory rate measurements. IEEE Trans. on Microwave Theory and Techniques, 57(10):2498--2507, Oct 2009.
[12]
A. D. Droitcour, T. B. Seto, B. K. Park, S. Yamada, A. Vergara, C. E. Hourani, T. Shing, A. Yuen, V. M. Lubecke, and O. Boric-Lubecke. Non-contact respiratory rate measurement validation for hospitalized patients. In 2009 Annu. Int. Conf. of the IEEE Eng. in Medicine and Biology Soc., pages 4812--4815, Sept 2009.
[13]
C. Graichen, J. Ashe, M. Ganesh, and L. Yu. Unobtrusive vital signs monitoring with range-controlled radar. In 2012 IEEE Signal Proc. in Medicine and Biology Symp. (SPMB), Dec 2012.
[14]
D. Halperin, W. Hu, A. Sheth, and D. Wetherall. Tool release: Gathering 802.11n traces with channel state information. ACM SIGCOMM CCR, 41(1):53, Jan. 2011.
[15]
Hillyard. RF respiration monitoring dataverse, 2018.
[16]
P. Hillyard, A. Luong, A. S. Abrar, N. Patwari, K. Sundar, R. Farney, J. Burch, C. A. Porucznik, and S. H. Pollard. Comparing respiratory monitoring performance of commercial wireless devices, 2018. arXiv:1807.06767.
[17]
R. Hostettler, O. Kaltiokallio, H. Yiğitler, S. Särkkä, and R. Jäntti. Rss-based respiratory rate monitoring using periodic gaussian processes and kalman filtering. In 2017 25th European Signal Processing Conf. (EUSIPCO), pages 256--260, Aug 2017.
[18]
W. Hu, H. Zhang, Z. Zhao, Y. Wang, and X. Wang. Real-time remote vital sign detection using a portable Doppler sensor system. In 2014 IEEE Sensors Applicat. Symp. (SAS), pages 89--93, Feb 2014.
[19]
W. Hu, Z. Zhao, Y. Wang, H. Zhang, and F. Lin. Noncontact accurate measurement of cardiopulmonary activity using a compact quadrature Doppler radar sensor. IEEE Trans. on Biomedical Engineering, 61(3):725--735, March 2014.
[20]
I. Immoreev and T. H. Tao. UWB radar for patient monitoring. IEEE Aerospace and Electronic Syst. Mag., 23(11):11--18, Nov 2008.
[21]
O. Kaltiokallio, H. Yiğitler, R. Jäntti, and N. Patwari. Non-invasive respiration rate monitoring using a single COTS TX-RX pair. In Proc. of the 13th Int. Symp. on Inform. Process. in Sensor Networks (IPSN '14 ), pages 59--69, April 2014.
[22]
Y. Kilic, H. Wymeersch, A. Meijerink, M. J. Bentum, and W. G. Scanlon. Device-free person detection and ranging in UWB networks. IEEE J. of Select. Topics in Signal Processing, 8(1):43--54, Feb 2014.
[23]
J. C. Y. Lai, Y. Xu, E. Gunawan, E. C. P. Chua, A. Maskooki, Y. L. Guan, K. S. Low, C. B. Soh, and C. L. Poh. Wireless sensing of human respiratory parameters by low-power ultrawideband impulse radio radar. IEEE Trans. on Instrumentation and Measurement, 60(3):928--938, March 2011.
[24]
A. Lazaro, D. Girbau, and R. Villarino. Analysis of vital signs monitoring using an IR-UWB radar. In Progress In Electromagnetics Research, volume 100, pages 265--284, 2010.
[25]
M. Leib, W. Menzel, B. Schleicher, and H. Schumacher. Vital signs monitoring with a UWB radar based on a correlation receiver. In Proc. of the 4th European Conf. on Antennas and Propagation, pages 1--5, April 2010.
[26]
C. Li, J. Ling, J. Li, and J. Lin. Accurate Doppler radar noncontact vital sign detection using the relax algorithm. IEEE Trans. on Instrumentation and Measurement, 59(3):687--695, March 2010.
[27]
P. Li and D. c. Wang. A quadrature Doppler radar system for sensing human respiration and heart rates. In IEEE 10th Int. Conf. on Signal Processing Proc., pages 2235--2238, Oct 2010.
[28]
W. Li, B. Tan, and R. J. Piechocki. Non-contact breathing detection using passive radar. In 2016 IEEE Int. Conf. on Commun. (ICC), pages 1--6, May 2016.
[29]
J. C. Lin. Noninvasive microwave measurement of respiration. Proceedings of the IEEE, 63(10):1530--1530, Oct 1975.
[30]
J. Liu, Y. Wang, Y. Chen, J. Yang, X. Chen, and J. Cheng. Tracking vital signs during sleep leveraging off-the-shelf WiFi. In Proc. of the 16th ACM Int. Symp. on Mobile Ad Hoc Networking and Computing, MobiHoc '15, pages 267--276, 2015.
[31]
X. Liu, J. Cao, S. Tang, and J. Wen. Wi-sleep: Contactless sleep monitoring via WiFi signals. In 2014 IEEE Real-Time Sys. Symp., pages 346--355, Dec 2014.
[32]
X. Liu, J. Cao, S. Tang, J. Wen, and P. Guo. Contactless respiration monitoring via off-the-shelf WiFi devices. IEEE Trans. Mobile Comput., 15(10):2466--2479, Oct 2016.
[33]
A. Luong, A. S. Abrar, T. Schmid, and N. Patwari. RSS step size: 1 dB is not enough! In Proc. of the 3rd Workshop on Hot Topics in Wireless, HotWireless '16, pages 17--21, 2016.
[34]
J. Ma, Y. Wang, H. Wang, Y. Wang, and D. Zhang. When can we detect human respiration with commodity WiFi devices? In Proc. of the 2016 ACM Int. Joint Conf. on Pervasive and Ubiquitous Computing: Adjunct, UbiComp '16, pages 325--328, 2016.
[35]
R. Nandakumar, S. Gollakota, and N. Watson. Contactless sleep apnea detection on smartphones. In Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services, MobiSys '15, pages 45--57, 2015.
[36]
R. Nandakumar, A. Takakuwa, T. Kohno, and S. Gollakota. Covertband: Activity information leakage using music. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 1(3):87:1--87:24, Sept. 2017.
[37]
Natus. Sleep works software, 2017. http://www.natus.com.
[38]
P. Nguyen, X. Zhang, A. Halbower, and T. Vu. Continuous and fine-grained breathing volume monitoring from afar using wireless signals. In IEEE INFOCOM 2016 - The 35th Annual IEEE Int. Conf. on Computer Commun., pages 1--9, April 2016.
[39]
V. Nguyen, A. Q. Javaid, and M. A. Weitnauer. Harmonic path (HAPA) algorithm for non-contact vital signs monitoring with IR-UWB radar. In 2013 IEEE Biomedical Circuits and Syst. Conf. (BioCAS), Oct 2013.
[40]
G. Ossberger, T. Buchegger, E. Schimback, A. Stelzer, and R. Weigel. Non-invasive respiratory movement detection and monitoring of hidden humans using ultra wideband pulse radar. In 2004 Intl. Workshop on Ultra Wideband Systems, pages 395--399, May 2004.
[41]
N. Patwari, L. Brewer, Q. Tate, O. Kaltiokallio, and M. Bocca. Breathfinding: A wireless network that monitors and locates breathing in a home. IEEE J. Sel. Topics Signal Process., 8(1):30--42, Feb 2014.
[42]
N. Patwari, J. Wilson, S. Ananthanarayanan, S. K. Kasera, and D. R. Westenskow. Monitoring breathing via signal strength in wireless networks. IEEE Trans. Mobile Comput., 13(8):1774--1786, Aug 2014.
[43]
Z. Peng, J. M. Muñoz-Ferreras, Y. Tang, C. Liu, R. Gómez-García, L. Ran, and C. Li. A portable fmcw interferometry radar with programmable low-if architecture for localization, isar imaging, and vital sign tracking. IEEE Trans. on Microwave Theory and Techniques, 65(4):1334--1344, April 2017.
[44]
R. Ravichandran, E. Saba, K. Y. Chen, M. Goel, S. Gupta, and S. N. Patel. Wibreathe: Estimating respiration rate using wireless signals in natural settings in the home. In 2015 IEEE Int. Conf. on Pervasive Computing and Commun. (PerCom), pages 131--139, March 2015.
[45]
N. V. Rivera, S. Venkatesh, C. Anderson, and R. M. Buehrer. Multi-target estimation of heart and respiration rates using ultra wideband sensors. In 2006 14th European Signal Processing Conf., pages 1--6, Sept 2006.
[46]
J. Salmi, O. Luukkonen, and V. Koivunen. Continuous wave radar based vital sign estimation: Modeling and experiments. In 2012 IEEE Radar Conf., pages 0564--0569, May 2012.
[47]
J. Salmi and A. F. Molisch. Propagation parameter estimation, modeling and measurements for ultrawideband MIMO radar. IEEE Trans. on Antennas and Propagation, 59(11):4257--4267, Nov 2011.
[48]
P. Sebel. Respiration, the breath of life. Torstar Books, 1985.
[49]
J. Shang and J. Wu. Fine-grained vital signs estimation using commercial WiFi devices. In Proc. of the 8th Wireless of the Students, by the Students, and for the Students Workshop, S3, pages 30--32, 2016.
[50]
J. Tu, T. Hwang, and J. Lin. Respiration rate measurement under 1-D body motion using single continuous-wave Doppler radar vital sign detection system. IEEE Trans. on Microwave Theory and Techniques, 64(6):1937--1946, June 2016.
[51]
T. van Beelen. EDF to ASCII converter, 2017. https://www.teuniz.net/edf2ascii/.
[52]
S. Venkatesh, C. R. Anderson, N. V. Rivera, and R. M. Buehrer. Implementation and analysis of respiration-rate estimation using impulse-based UWB. In MILCOM 2005 - 2005 IEEE Military Commun. Conf., volume 5, pages 3314--3320, Oct 2005.
[53]
H. Wang, D. Zhang, J. Ma, Y. Wang, Y. Wang, D. Wu, T. Gu, and B. Xie. Human respiration detection with commodity WiFi devices: Do user location and body orientation matter? In Proc. of the 2016 ACM Int. Joint Conf. on Pervasive and Ubiquitous Computing, UbiComp '16, pages 25--36, 2016.
[54]
X. Wang, C. Yang, and S. Mao. Phasebeat: Exploiting csi phase data for vital sign monitoring with commodity WiFi devices. In 2017 IEEE 37th Int. Conf. on Distributed Computing Syst. (ICDCS), pages 1230--1239, June 2017.
[55]
Y. Wang, Q. Liu, and A. E. Fathy. Simultaneous localization and respiration detection of multiple people using low cost UWB biometric pulse Doppler radar sensor. In 2012 IEEE/MTT-S Int. Microwave Symp. Digest, pages 1--3, June 2012.
[56]
D. T. Wisland, K. Granhaug, J. R. Pleym, N. Andersen, S. Støa, and H. A. Hjortland. Remote monitoring of vital signs using a CMOS UWB radar transceiver. In 2016 14th IEEE Intl. New Circuits and Systems Conf. (NEWCAS), pages 1--4, June 2016.
[57]
C. Wu, Z. Yang, Z. Zhou, X. Liu, Y. Liu, and J. Cao. Non-invasive detection of moving and stationary human with WiFi. IEEE J. on Select. Areas in Commun., 33(11):2329--2342, Nov 2015.
[58]
Z. Xia and Y. Zhang. Dual-carrier noncontact vital sign detection with a noise suppression scheme based on phase-locked loop. IEEE Trans. on Microwave Theory and Techniques, 64(11):4003--4011, Nov 2016.
[59]
Y. Xie, Z. Li, and M. Li. Precise power delay profiling with commodity WiFi. In Proc. of the 21st Annu. Int. Conf. on Mobile Computing and Networking, MobiCom '15, pages 53--64, 2015.
[60]
Z. Yang, P. H. Pathak, Y. Zeng, X. Liran, and P. Mohapatra. Vital sign and sleep monitoring using millimeter wave. ACM Trans. Sen. Netw., 13(2):14:1--14:32, Apr. 2017.
[61]
P. R. Yifan Chen. Human respiration rate estimation using ultra-wideband distributed cognitive radar system. Int. J. of Automation and Computing, 5(4):325, 2008.
[62]
M. Youssef, M. Mah, and A. Agrawala. Challenges: Device-free passive localization for wireless environments. In Proceedings of the 13th Annual ACM Intl. Conf. on Mobile Computing and Networking, MobiCom '07, pages 222--229, 2007.
[63]
H. Zhao, H. Hong, L. Sun, Y. Li, C. Li, and X. Zhu. Noncontact physiological dynamics detection using low-power digital-IF Doppler radar. IEEE Trans. on Instrumentation and Measurement, 66(7):1780--1788, July 2017.
[64]
Y. Zhao, J. Ashe, and T. Yu. Respiration monitoring using a wireless network with space and frequency diversities. In 2016 IEEE Int. Conf. on Consumer Electronics (ICCE), pages 474--477, Jan 2016.

Cited By

View all
  • (2024)Revisiting Wireless Breath and Crowd Inference Attacks With Defensive DeceptionIEEE/ACM Transactions on Networking10.1109/TNET.2024.345390332:6(4976-4988)Online publication date: Dec-2024
  • (2024)Eliminating Design Effort: A Reconfigurable Sensing Framework for Chipless, Backscatter TagsIEEE/ACM Transactions on Networking10.1109/TNET.2023.332026332:2(1155-1170)Online publication date: Apr-2024
  • (2024)A Survey on Human Profile Information Inference via Wireless SignalsIEEE Communications Surveys & Tutorials10.1109/COMST.2024.337339726:4(2577-2610)Online publication date: Dec-2025
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
MobiCom '18: Proceedings of the 24th Annual International Conference on Mobile Computing and Networking
October 2018
884 pages
ISBN:9781450359030
DOI:10.1145/3241539
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 15 October 2018

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. respiration monitoring
  2. signal processing
  3. wireless sensor network

Qualifiers

  • Research-article

Funding Sources

Conference

MobiCom '18
Sponsor:

Acceptance Rates

MobiCom '18 Paper Acceptance Rate 42 of 187 submissions, 22%;
Overall Acceptance Rate 440 of 2,972 submissions, 15%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)153
  • Downloads (Last 6 weeks)33
Reflects downloads up to 07 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Revisiting Wireless Breath and Crowd Inference Attacks With Defensive DeceptionIEEE/ACM Transactions on Networking10.1109/TNET.2024.345390332:6(4976-4988)Online publication date: Dec-2024
  • (2024)Eliminating Design Effort: A Reconfigurable Sensing Framework for Chipless, Backscatter TagsIEEE/ACM Transactions on Networking10.1109/TNET.2023.332026332:2(1155-1170)Online publication date: Apr-2024
  • (2024)A Survey on Human Profile Information Inference via Wireless SignalsIEEE Communications Surveys & Tutorials10.1109/COMST.2024.337339726:4(2577-2610)Online publication date: Dec-2025
  • (2024)An Evaluation of Unobtrusive Sensing in a Healthcare Case StudyIEEE Access10.1109/ACCESS.2024.341955512(89405-89417)Online publication date: 2024
  • (2024)Contactless vital sign monitoring systems: a comprehensive survey of remote health sensing for heart rate and respiration in internet of things and sleep applicationsSensors & Diagnostics10.1039/D4SD00073K3:7(1085-1118)Online publication date: 2024
  • (2023)Non-intrusive Human Vital Sign Detection Using mmWave Sensing Technologies: A ReviewACM Transactions on Sensor Networks10.1145/362716120:1(1-36)Online publication date: 3-Nov-2023
  • (2023)Phantom-CSI Attacks against Wireless Liveness DetectionProceedings of the 26th International Symposium on Research in Attacks, Intrusions and Defenses10.1145/3607199.3607245(440-454)Online publication date: 16-Oct-2023
  • (2023)Experience: Barriers and Opportunities of Wearables for Eating ResearchExtended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems10.1145/3544549.3573841(1-8)Online publication date: 19-Apr-2023
  • (2023)Attention-based Learning for Sleep Apnea and Limb Movement Detection using Wi-Fi CSI Signals2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring)10.1109/VTC2023-Spring57618.2023.10200274(1-5)Online publication date: Jun-2023
  • (2023)On Goodness of WiFi Based Monitoring of Sleep Vital Signs in the WildIEEE Transactions on Mobile Computing10.1109/TMC.2021.307753322:1(341-355)Online publication date: 1-Jan-2023
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

EPUB

View this article in ePub.

ePub

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media