[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3107411.3107434acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
research-article
Public Access

Bayesian Hyperparameter Optimization for Machine Learning Based eQTL Analysis

Published: 20 August 2017 Publication History

Abstract

Machine learning methods are being applied to a wide range of problems in biology and bioinformatics. These methods often rely on configuring high level parameters, or hyperparameters, such as regularization hyperparameters in sparse learning models like graph-guided multitask Lasso methods. Different choices for these hyperparameters will lead to different results, which makes finding good hyperparameter combinations an important task when using these hyperparameter dependent methods. There are several different ways to tune hyperparameters including manual tuning, grid search, random search, and Bayesian optimization. In this paper, we apply three hyperparameter tuning strategies to eQTL analysis including grid and random search in addition to Bayesian optimization. Experiments show that the Bayesian optimization strategy outperforms the other strategies in modeling eQTL associations. Applying this strategy to assess eQTL associations using the 1000 Genomes structural variation genotypes and RNAseq data in gEUVADIS, we identify a set of new SVs associated with gene expression changes in a human population.

References

[1]
J. Bergstra and Y. Bengio. Random Search for Hyper-parameter Optimization. J. Mach. Learn. Res., 13:281--305, Feb. 2012.
[2]
E. J. Candes, M. B. Wakin, and S. P. Boyd. Enhancing sparsity by reweighted ??? 1 minimization. Journal of Fourier analysis and applications, 14(5--6):877--905, 2008.
[3]
E. Y. Chen, C. M. Tan, Y. Kou, Q. Duan, Z. Wang, G. V. Meirelles, N. R. Clark, and A. Maayan. Enrichr: interactive and collaborative html5 gene list enrichment analysis tool. BMC bioinformatics, 14(1):128, 2013.
[4]
X. Chen, X. Shi, X. Xu, Z. Wang, R. Mills, C. Lee, and J. Xu. A two-graph guided multi-task lasso approach for eqtl mapping. In International Conference on Artificial Intelligence and Statistics, pages 208--217, 2012.
[5]
P. Duchateau, C. Pullinger, M. Cho, C. Eng, and J. Kane. Apolipoprotein l gene family: tissue-specific expression, splicing, promoter regions; discovery of a new gene. Journal of Lipid Research, 42(4):620--630, 2001.
[6]
K. Kawasaki, S. Minoshima, E. Nakato, K. Shibuya, A. Shintani, J. L. Schmeits, J. Wang, and N. Shimizu. One-megabase sequence analysis of the human immunoglobulin lambda gene locus. Genome Research, 7(3):250--261, 1997.
[7]
W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler, and D. Haussler. The human genome browser at ucsc. Genome research, 12(6):996-- 1006, 2002.
[8]
M. V. Kuleshov, M. R. Jones, A. D. Rouillard, N. F. Fernandez, Q. Duan, Z. Wang, S. Koplev, S. L. Jenkins, K. M. Jagodnik, A. Lachmann, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic acids research, page gkw377, 2016.
[9]
T. Lappalainen, M. Sammeth, M. R. Friedländer, P. AC???t Hoen, J. Monlong, M. A. Rivas, M. Gonzàlez-Porta, N. Kurbatova, T. Griebel, P. G. Ferreira, et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature, 501(7468):506--511, 2013.
[10]
Q. Li, J.-H. Seo, B. Stranger, A. McKenna, I. Peter, T. LaFramboise, M. Brown, S. Tyekucheva, and M. L. Freedman. Integrative eqtl-based analyses reveal the biology of breast cancer risk loci. Cell, 152(3):633--641, 2013.
[11]
L. Liang, N. Morar, A. L. Dixon, G. M. Lathrop, G. R. Abecasis, M. F. Moffatt, and W. O. Cookson. A cross-platform analysis of 14,177 expression quantitative trait loci derived from lymphoblastoid cell lines. Genome research, 23(4):716--726, 2013.
[12]
Z. Liu, H. Lu, Z. Jiang, A. Pastuszyn, and C.-a. A. Hu. Apolipoprotein l6, a novel proapoptotic bcl-2 homology 3-only protein, induces mitochondria-mediated apoptosis in cancer cells. Molecular Cancer Research, 3(1):21--31, 2005.
[13]
R. E. Mills, K. Walter, C. Stewart, R. E. Handsaker, K. Chen, C. Alkan, A. Abyzov, S. C. Yoon, K. Ye, R. K. Cheetham, et al. Mapping copy number variation by population-scale genome sequencing. Nature, 470(7332):59--65, 2011.
[14]
J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian Optimization of Machine Learning Algorithms. arXiv:1206.2944 {cs, stat}, June 2012. arXiv: 1206.2944.
[15]
B. E. Stranger, M. S. Forrest, A. G. Clark, M. J. Minichiello, S. Deutsch, R. Lyle, S. Hunt, B. Kahl, S. E. Antonarakis, S. Tavaré, et al. Genome-wide associations of gene expression variation in humans. PLoS genetics, 1(6):e78, 2005.
[16]
B. E. Stranger, M. S. Forrest, M. Dunning, C. E. Ingle, C. Beazley, N. Thorne, R. Redon, C. P. Bird, A. De Grassi, C. Lee, et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science, 315(5813):848-- 853, 2007.
[17]
P. H. Sudmant, T. Rausch, E. J. Gardner, R. E. Handsaker, A. Abyzov, J. Huddleston, Y. Zhang, K. Ye, G. Jun, M. H.-Y. Fritz, et al. An integrated map of structural variation in 2,504 human genomes. Nature, 526(7571):75--81, 2015.
[18]
S. Takahashi, Y. Cui, Y. Han, J. Fagerness, B. Galloway, Y. Shen, and M. T. Tsuang. Association of snps and haplotypes in apol1, 2 and 4 with schizophrenia. schizophrenia research. Journal of Schizophrenia Research, 104(0):153--164, 2008.
[19]
L. Tian, A. Quitadamo, F. Lin, and X. Shi. Methods for population-based eqtl analysis in human genetics. Tsinghua Science and Technology, 19(6):624--634, 2014.
[20]
G. Wan, S. Zhaorigetu, Z. Liu, R. Kaini, Z. Jiang, and C. Hu. Apolipoprotein l1, a novel bcl-2 homology domain 3-only lipid-binding protein, induces autophagic cell death. Journal of Biological Chemistry, 283(31):21540--21549, 2008.
[21]
L. Zhang and S. Kim. Learning gene networks under snp perturbations using eqtl datasets. PLoS computational biology, 10(2):e1003420, 2014.

Cited By

View all
  • (2024)Enhancing Intrusion Detection in Wireless Sensor Networks Using a GSWO-CatBoost ApproachSensors10.3390/s2411333924:11(3339)Online publication date: 23-May-2024
  • (2024)Role of Optimization in RNA–Protein-Binding PredictionCurrent Issues in Molecular Biology10.3390/cimb4602008746:2(1360-1373)Online publication date: 4-Feb-2024
  • (2024)Enhancement of Classifier Performance with Adam and RanAdam Hyper-Parameter Tuning for Lung Cancer Detection from Microarray Data—In Pursuit of PrecisionBioengineering10.3390/bioengineering1104031411:4(314)Online publication date: 26-Mar-2024
  • Show More Cited By
  1. Bayesian Hyperparameter Optimization for Machine Learning Based eQTL Analysis

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ACM-BCB '17: Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics
    August 2017
    800 pages
    ISBN:9781450347228
    DOI:10.1145/3107411
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 20 August 2017

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. bayesian optimization
    2. eqtl analysis
    3. graph-guided multitask lasso
    4. hyperparameter optimization

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    BCB '17
    Sponsor:

    Acceptance Rates

    ACM-BCB '17 Paper Acceptance Rate 42 of 132 submissions, 32%;
    Overall Acceptance Rate 254 of 885 submissions, 29%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)74
    • Downloads (Last 6 weeks)11
    Reflects downloads up to 14 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Enhancing Intrusion Detection in Wireless Sensor Networks Using a GSWO-CatBoost ApproachSensors10.3390/s2411333924:11(3339)Online publication date: 23-May-2024
    • (2024)Role of Optimization in RNA–Protein-Binding PredictionCurrent Issues in Molecular Biology10.3390/cimb4602008746:2(1360-1373)Online publication date: 4-Feb-2024
    • (2024)Enhancement of Classifier Performance with Adam and RanAdam Hyper-Parameter Tuning for Lung Cancer Detection from Microarray Data—In Pursuit of PrecisionBioengineering10.3390/bioengineering1104031411:4(314)Online publication date: 26-Mar-2024
    • (2022)Hyperparameter Tuning Algorithm Comparison with Machine Learning Algorithms2022 6th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE)10.1109/ICITISEE57756.2022.10057630(183-188)Online publication date: 13-Dec-2022
    • (2021)An Automatic Convolutional Neural Network Optimization Using a Diversity-Guided Genetic AlgorithmIEEE Access10.1109/ACCESS.2021.30917299(91410-91426)Online publication date: 2021
    • (2020)BOAssembler: A Bayesian Optimization Framework to Improve RNA-Seq Assembly PerformanceAlgorithms for Computational Biology10.1007/978-3-030-42266-0_15(188-197)Online publication date: 3-Apr-2020

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media