[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3105971.3105984acmotherconferencesArticle/Chapter ViewAbstractPublication PagesvinciConference Proceedingsconference-collections
short-paper

Visual support for rastering of unequally spaced time series

Published: 14 August 2017 Publication History

Abstract

Preprocessing is a mandatory first step to make data usable for analysis. While in time series analysis many established methods require data that are sampled in regular time intervals, in practice sensors may sample data at varying interval lengths. Time series rastering is the process of aggregating unequally spaced time series into equal interval lengths. In this paper we discuss critical aspects in the context of time series rastering, and we present a visual design which supports the parametrization of the rastering transformation, communicates the introduced uncertainties and quality issues, and facilitates the comparison of alternative rastering outcomes to achieve optimal results.

References

[1]
Wolfgang Aigner, Silvia Miksch, Heidrun Schumann, and Christian Tominski. 2011. Visualization of Time-Oriented Data. Springer, London, UK. 286 pages.
[2]
Jos Barateiro and Helena Galhardas. 2005. A Survey of Data Quality Tools. Datenbank-Spektrum 14, 15--21 (2005), 48. http://dc-pubs.dbs.uni-leipzig.de/files/Barateiro2005ASurveyofDataQuality.pdf
[3]
Carlo Batini and Monica Scannapieco. 2006. Data Quality: Concepts, Methodologies and Techniques (Data-Centric Systems and Applications). Springer Verlag New York, Inc., Secaucus, NJ, USA.
[4]
Jürgen Bernard, Tobias Ruppert, Oliver Goroll, Thorsten May, and Jörn Kohlhammer. 2012. Visual-Interactive Preprocessing of Time Series Data. In Proceedings of SIGRAD: Interactive Visual Analysis of Data (Linköping Electronic Conference Proceedings), Andreas Kerren and Stefan Seipel (Eds.), Vol. 81. Linköping University Electronic Press, Linköping, Sweden, 39--48. http://dblp.uni-trier.de/db/conf/sigrad/sigrad2012.html#BernardRGMK12
[5]
Jean-Paul Chilès and Pierre Delfiner. 2012. Geostatistics: modeling spatial uncertainty (2. ed. ed.). Wiley, Hoboken, NJ.
[6]
Andreas Eckner. 2014. A Framework for the Analysis of Unevenly Spaced Time Series Data. (July 2014). Retrieved from http://eckner.com/research.html on (22. Feb. 2017).
[7]
Theresia Gschwandtner, Wolfgang Aigner, Silvia Miksch, Johannes Gärtner, Simone Kriglstein, Margit Pohl, and Nik Suchy. 2014. TimeCleanser: A Visual Analytics Approach for Data Cleansing of Time-oriented Data. In Proceedings of the 14th International Conference on Knowledge Technologies and Data-driven Business (i-KNOW '14). ACM, New York, NY, USA, 18:1--18:8.
[8]
Theresia Gschwandtner, Johannes Gärtner, Wolfgang Aigner, and Silvia Miksch. 2012. A Taxonomy of Dirty Time-Oriented Data. In Lecture Notes in Computer Science (LNCS 7465): Multidisciplinary Research and Practice for Information Systems (Proceedings of the CD-ARES 2012), Gerald Quirchmayr, Josef Basl, Ilsun You, Lida Xu, and Edgar Weippl (Eds.). Springer, Berlin / Heidelberg, Prague, Czech Republic, 58--72.
[9]
Jeffrey Heer, Joseph Hellerstein, and Sean Kandel. 2015. Predictive Interaction for Data Transformation. In Conference on Innovative Data Systems Research (CIDR). Asilomar, California, USA. http://idl.cs.washington.edu/papers/predictive-interaction
[10]
Richard H. Jones. 1985. Time series analysis with unequally spaced data. In Handbook of statistics, E. J. Hannan, P. R. Krishnaiah, and M. M. Rao (Eds.). Vol. 5. Elsevier, Amsterdam, Netherlands, 157--178.
[11]
Sean Kandel, Jeffrey Heer, Catherine Plaisant, Jessie Kennedy, Frank van Ham, Nathalie Henry Riche, Chris Weaver, Bongshin Lee, Dominique Brodbeck, and Paolo Buono. 2011. Research directions in data wrangling: Visualizations and transformations for usable and credible data. Information Visualization 10, 4 (2011), 271--288.
[12]
Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wrangler: Interactive Visual Specification of Data Transformation Scripts. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '11). ACM, 3363--3372.
[13]
Sean Kandel, Ravi Parikh, Andreas Paepcke, Joseph M. Hellerstein, and Jeffrey Heer. 2012. Profiler: Integrated Statistical Analysis and Visualization for Data Quality Assessment. In Proceedings of the International Working Conference on Advanced Visual Interfaces (AVI '12). ACM, 547--554.
[14]
Won Kim, Byoung-Ju Choi, Eui-Kyeong Hong, Soo-Kyung Kim, and Doheon Lee. 2003. A taxonomy of dirty data. Data mining and knowledge discovery 7, 1 (2003), 81--99. http://link.springer.com/article/10.1023/A:1021564703268
[15]
Jason Jingshi Li, Boi Faltings, Olga Saukh, David Hasenfratz, and Jan Beutel. 2012. Sensing the Air We Breathe: The Opensense Zurich Dataset. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI'12). AAAI Press, 323--325. http://dl.acm.org/citation.cfm?id=2900728.2900775
[16]
Alan M. MacEachren. 2015. Visual Analytics and Uncertainty: It's Not About the Data. In EuroVis Workshop on Visual Analytics (EuroVA), E. Bertini and J. C. Roberts (Eds.). The Eurographics Association.
[17]
John Morcos, Ziawasch Abedjan, Ihab Francis Ilyas, Mourad Ouzzani, Paolo Papotti, and Michael Stonebraker. 2015. DataXFormer: An Interactive Data Transformation Tool. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data (SIGMOD '15). ACM, New York, NY, USA, 883--888.
[18]
Paulo Oliveira, Ftima Rodrigues, and Pedro Rangel Henriques. 2005. A Formal Definition of Data Quality Problems. In IQ. http://mitiq.mit.edu/ICIQ/Documents/IQ%20Conference%202005/Papers/AFormalDefinitionofDQProblems.pdf
[19]
Leo L. Pipino, Yang W. Lee, and Richard Y. Wang. 2002. Data Quality Assessment. Commun. ACM 45, 4 (April 2002), 211--218.
[20]
Thomas C. Redman. 2012. Data Quality Management Past, Present, and Future: Towards a Management System for Data. In Handbook of Data Quality, Shazia Sadiq (Ed.). Springer Berlin Heidelberg, 15--40. http://link.springer.com/chapter/10.1007/978-3-642-36257-6_2
[21]
D. Sacha, H. Senaratne, B. C. Kwon, G. Ellis, and D. A. Keim. 2016. The Role of Uncertainty, Awareness, and Trust in Visual Analytics. IEEE Transactions on Visualization and Computer Graphics 22, 1 (Jan 2016), 240--249.

Cited By

View all
  • (2023)A visual analysis approach for data imputation via multi-party tabular data correlation strategiesFrontiers of Information Technology & Electronic Engineering10.1631/FITEE.230048025:3(398-414)Online publication date: 29-Dec-2023
  • (2023)Visual Parameter Space Exploration in Time and SpaceComputer Graphics Forum10.1111/cgf.1478542:6Online publication date: 3-Apr-2023
  • (2021)Understanding the Effects of Visualizing Missing Values on Visual Data Exploration2021 IEEE Visualization Conference (VIS)10.1109/VIS49827.2021.9623328(161-165)Online publication date: Oct-2021
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
VINCI '17: Proceedings of the 10th International Symposium on Visual Information Communication and Interaction
August 2017
158 pages
ISBN:9781450352925
DOI:10.1145/3105971
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

  • KMUTT: King Mongkut's University of Technology Thonburi

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 14 August 2017

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. time series analysis
  2. time series rastering
  3. visual analytics

Qualifiers

  • Short-paper

Funding Sources

Conference

VINCI '17
Sponsor:
  • KMUTT

Acceptance Rates

VINCI '17 Paper Acceptance Rate 12 of 27 submissions, 44%;
Overall Acceptance Rate 71 of 193 submissions, 37%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)9
  • Downloads (Last 6 weeks)1
Reflects downloads up to 12 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2023)A visual analysis approach for data imputation via multi-party tabular data correlation strategiesFrontiers of Information Technology & Electronic Engineering10.1631/FITEE.230048025:3(398-414)Online publication date: 29-Dec-2023
  • (2023)Visual Parameter Space Exploration in Time and SpaceComputer Graphics Forum10.1111/cgf.1478542:6Online publication date: 3-Apr-2023
  • (2021)Understanding the Effects of Visualizing Missing Values on Visual Data Exploration2021 IEEE Visualization Conference (VIS)10.1109/VIS49827.2021.9623328(161-165)Online publication date: Oct-2021
  • (2019)Visual‐Interactive Preprocessing of Multivariate Time Series DataComputer Graphics Forum10.1111/cgf.1369838:3(401-412)Online publication date: 10-Jul-2019
  • (2019)Where's My Data? Evaluating Visualizations with Missing DataIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2018.286491425:1(914-924)Online publication date: Jan-2019
  • (2019)Capturing and Visualizing Provenance From Data WranglingIEEE Computer Graphics and Applications10.1109/MCG.2019.294185639:6(61-75)Online publication date: 1-Nov-2019

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media