[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Quasi-matrix-free Hybrid Multigrid on Dynamically Adaptive Cartesian Grids

Published: 06 February 2018 Publication History

Abstract

We present a family of spacetree-based multigrid realizations using the tree’s multiscale nature to derive coarse grids. They align with matrix-free geometric multigrid solvers as they never assemble the system matrices, which is cumbersome for dynamically adaptive grids and full multigrid. The most sophisticated realizations use BoxMG to construct operator-dependent prolongation and restriction in combination with Galerkin/Petrov-Galerkin coarse-grid operators. This yields robust solvers for nontrivial elliptic problems. We embed the algebraic, problem-dependent, and grid-dependent multigrid operators as stencils into the grid and evaluate all matrix-vector products in situ throughout the grid traversals. Such an approach is not literally matrix-free as the grid carries the matrix. We propose to switch to a hierarchical representation of all operators. Only differences of algebraic operators to their geometric counterparts are held. These hierarchical differences can be stored and exchanged with small memory footprint. Our realizations support arbitrary dynamically adaptive grids while they vertically integrate the multilevel operations through spacetree linearization. This yields good memory access characteristics, while standard colouring of mesh entities with domain decomposition allows us to use parallel many-core clusters. All realization ingredients are detailed such that they can be used by other codes.

References

[1]
M. F. Adams, J. Brown, M. Knepley, and R. Samtaney. 2016. Segmental refinement: A multigrid technique for data locality. SIAM J. Sci. Comput. 38, 4 (2016), C426--C440.
[2]
Advanced Scientific Computing Advisory Committee (ASCAC) Subcommittee. 2010. The Opportunities and Challenges of Exascale Computing. (2010). Retrieved from https://science.energy.gov/∼/media/ascr/ascac/pdf/reports/Exascale_subcomm ittee_report.pdf.
[3]
A. AlOnazi, G. S. Markomanolis, and D. Keyes. 2017. Asynchronous task-based parallelization of algebraic multigrid. In Proceedings of the Platform for Advanced Scientific Computing Conference (PASC’17). ACM, 5:1--5:11.
[4]
M. Bader. 2013. Space-Filling Curves—An Introduction with Applications in Scientific Computing. Texts in Computational Science and Engineering, Vol. 9. Springer-Verlag.
[5]
M. Bader, S. Schraufstetter, C. A. Vigh, and J. Behrens. 2008. Memory efficient adaptive mesh generation and implementation of multigrid algorithms using sierpinski curves. Int. J. Comput. Sci. Eng. 4, 1 (2008), 12--21.
[6]
A. B. Baker, R. D. Falgout, T. V. Kolev, and U. Meier Yang. 2011. Multigrid smoothers for ultraparallel computing. SIAM J. Sci. Comput. 33, 5 (2011), 2864--2887.
[7]
S. Balay and others. 2016. PETSc Web page. Retrieved from http://www.mcs.anl.gov/petsc.
[8]
P. Bastian, W. Hackbusch, and G. Wittum. 1998. Additive and multiplicative multi-grid: A comparison. Computing 60, 4 (1998), 345--364.
[9]
A. Behie and P. A. Forsyth, Jr. 1983. Multi-grid solution of three-dimensional problems with discontinuous coefficients. Appl. Math. Comput. 13, 3--4 (1983), 229--240.
[10]
A. Brandt. 1977. Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31 (1977), 333--390.
[11]
A. Brandt and O. E. Livne. 2011. Multigrid techniques—1984 guide with applications to fluid dynamics. Classics in Applied Mathematics, 67, SIAM.
[12]
H.-J. Bungartz, W. Eckhardt, T. Weinzierl, and C. Zenger. 2010. A precompiler to reduce the memory footprint of multiscale PDE solvers in C++. Future Gen. Comput. Syst. 26, 1 (2010), 175--182.
[13]
C. Burstedde, L. C. Wilcox, and O. Ghattas. 2011. p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. 33, 3 (2011), 1103--1133.
[14]
D. E. Charrier and T. Weinzierl. 2017. An experience report on (auto-)tuning of mesh-based PDE solvers on shared memory systems. In Proceedings of the Conference on Parallel Processing and Applied Mathematics (PPAM’17), R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Wasniewski (Eds.). (accepted).
[15]
A. J. Cleary et al. 2000. Robustness and scalability of algebraic multigrid. SIAM J. Sci. Comput. 21, 5 (2000), 1886--1908.
[16]
J. E. Dendy. 1982. Black box multigrid. J. Comput. Phys. 48, 3 (1982), 366--386.
[17]
J. E. Dendy. 1983. Black box multigrid for nonsymmetric problems. Appl. Math. Comput. 13, 3--4 (1983), 261--283.
[18]
J. E. Dendy. 1987. Two multigrid methods for three-dimensional problems with discontinuous and anisotropic coefficients. SIAM J. Sci. Statist. Comput. 8, 5 (1987), 673--685.
[19]
J. E. Dendy. 1988. Black box multigrid for periodic and singular problems. Appl. Math. Comput. 25, 1 (1988), 1--10.
[20]
J. E. Dendy and J. D. Moulton. 2010. Black box multigrid with coarsening by a factor of three. Numer. Lin. Alg. Appl. 17 (2010), 577--598.
[21]
J. Dongarra et al. 2016. A Proposed API for Batched Basic Linear Algebra Subprograms. Technical Report 2016.25. University of Manchester. Retrieved from http://eprints.ma.man.ac.uk/2464/1/covered/MIMS\ep2016\25.pdf.
[22]
J. Dongarra, J. Hittinger, et al. 2014. Applied Mathematics Research for Exascale Computing. Technical Report. DOE ASCR Exascale Mathematics Working Group: Retrieved from http://www.netlib.org/utk/people/JackDongarra/PAPERS/doe-exascale-math-report.pdf.
[23]
W. Eckhardt, R. Glas, D. Korzh, S. Wallner, and T. Weinzierl. 2016. On-the-fly memory compression for multibody algorithms. In Proceedings of the International Conference on Parallel Computing (ParCo’15), G. R. Joubert, H. Leather, M. Parsons, F. Peters, and M. Sawyer (Eds.), Vol. 27. IOS Press, 421--430.
[24]
W. Eckhardt and T. Weinzierl. 2010. A blocking strategy on multicore architectures for dynamically adaptive PDE solvers. In Proceedings of the Conference on Parallel Processing and Applied Mathematics (PPAM’09) (LNCS), R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Wasniewski (Eds.), Vol. 6068. Springer-Verlag, 567--575.
[25]
C. Feichtinger, S. Donath, H. Köstler, J. Götz, and U. Rüde. 2011. WaLBerla: HPC software design for computational engineering simulations. J. Comput. Sci. 2, 2 (2011), 105--112.
[26]
P. Ghysels and W. Vanroose. 2015. Modeling the performance of geometric multigrid stencils on multicore computer architectures. SIAM J. Sci. Comput. 37, 2 (2015), C194--C216.
[27]
B. Gmeiner, H. Köstler, M. Stürmer, and U. Rüde. 2014. Parallel multigrid on hierarchical hybrid grids: A performance study on current high performance computing clusters. Concurr. Comput.: Pract. Exper. 26, 1 (2014), 217--240.
[28]
B. Gmeiner, U. Rüde, H. Stengel, C. Waluga, and B. Wohlmuth. 2015. Towards textbook efficiency for parallel multigrid. Numer. Math. Theory Methods Appl. 8 (2015), 22--46. Issue 01.
[29]
M. Griebel. 1990. Zur Lösung von Finite-Differenzen- und Finite-Element-Gleichungen mittels der Hiearchischen-Transformations-Mehrgitter-Methode. PhD thesis. TU München.
[30]
M. Griebel. 1994. Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen. Habilitation Thesis. TU München.
[31]
M. Griebel and G. Zumbusch. 1999. Parallel multigrid in an adaptive PDE solver based on hashing and space-filling curves. Parallel Comput. 25, 7 (July 1999), 827--843.
[32]
L. B. Hart, S. F. McCormick, A. O’Gallagher, and J. W. Thomas. 1986. The fast adaptive composite-grid method (FAC): Algorithms for advanced computers. Appl. Math. Comput. 19, 1--4 (1986), 103--126.
[33]
T. Huckle. 2008. Compact fourier analysis for designing multigrid methods. SIAM J. Sci. Comput. 31, 1 (2008), 644--666.
[34]
J. King, T. Gilray, R. M. Kirby, and M. Might. 2016. Dynamic sparse-matrix allocation on GPUs. In Proceedings of ISC High Performance 2016. 61--80.
[35]
C. Lu, X. Jiao, and N. M. Missirlis. 2014. A hybrid geometric + algebraic multigrid method with semi-iterative smoothers. Numer. Lin. Alg. Appl. 21, 2 (2014), 221--238.
[36]
S. P. MacLachlan, J. D. Moulton, and T. P. Chartier. 2012. Robust and adaptive multigrid methods: Comparing structured and algebraic approaches. Numer. Lin. Alg. Appl. 19, 2 (2012), 389--413.
[37]
T. Malas, G. Hager, H. Ltaief, and D. Keyes. 2015. Multi-dimensional intra-tile parallelization for memory-starved stencil computations. CoRR abs/1510.04995 (2015).
[38]
J. D. McCalpin. 1995. Memory bandwidth and machine balance in current high performance computers. IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter (1995), 19--25.
[39]
S. F. McCormick. 1989. Multilevel Adaptive Methods for Partial Differential Equations. SIAM.
[40]
M. Mehl, T. Weinzierl, and C. Zenger. 2006. A cache-oblivious self-adaptive full multigrid method. Numer. Lin. Alg. Appl. 13, 2--3 (2006), 275--291.
[41]
J. D. Moulton, J. E. Dendy, and J. M. Hyman. 1998. The black box multigrid numerical homogenization algorithm. J. Comput. Phys. 142, 1 (1998), 80--108.
[42]
B. Reps and T. Weinzierl. 2017. A complex additive geometric multigrid solver for the Helmholtz equations on spacetrees. ACM Trans. Math. Software 44, 1 (2017), 2:1--2:36.
[43]
J. Rudi, A. C. I. Malossi, T. Isaac, G. Stadler, M. Gurnis, P. W. J. Staar, Y. Ineichen, C. Bekas, A. Curioni, and O. Ghattas. 2015. An extreme-scale implicit solver for complex PDEs: Highly heterogeneous flow in earth’s mantle. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC’15). ACM, New York, NY, 5:1--5:12.
[44]
R. S. Sampath, S. S. Adavani, H. Sundar, I. Lashuk, and G. Biros. 2008. Dendro: Parallel algorithms for multigrid and AMR methods on 2:1 balanced octrees. In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing (SC’08). IEEE Press, Piscataway, NJ, 18:1--18:12.
[45]
M. Schreiber, T. Weinzierl, and H.-J. Bungartz. 2013. Cluster optimization and parallelization of simulations with dynamically adaptive grids. In Proceedings Euro-Par 2013 (Lecture Notes in Computer Science), F. Wolf, B. Mohr, and D. an Mey (Eds.), Vol. 8097. Springer-Verlag, Berlin, 484--496.
[46]
T. Scott. 1985. Multi-grid methods for oil reservoir simulation in two and three dimensions. J. Comput. Phys. 59, 2 (1985), 290--307.
[47]
Y. Shapira. 2003. Matrix-Based Multigrid. Kluwer.
[48]
K. Stüben. 2001. Appendix A: An introduction to algebraic multigrid. In Multigrid, U. Trottenberg, C. W. Oosterlee, and A. Schüller (Eds.). Elsevier Science Inc.
[49]
H. Sundar, G. Biros, C. Burstedde, J. Rudi, O. Ghattas, and G. Stadler. 2012. Parallel geometric-algebraic multigrid on unstructured forests of octrees. In Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis (SC’12). IEEE Computer Society Press, Los Alamitos, CA, 43:1--43:11.
[50]
H. Sundar, R. S. Sampath, and G. Biros. 2008. Bottom-up construction and 2:1 balance refinement of linear octrees in parallel. SIAM J. Sci. Comput. 30, 5 (2008), 2675--2708.
[51]
E. Treister and I. Yavneh. 2010. Square and stretch multigrid for stochastic matrix eigenproblems. Numer. Lin. Alg. Appl. 17, 2–3 (2010), 229--251.
[52]
U. Trottenberg, C. W. Oosterlee, and A. Schüller. 2001. Multigrid. Academic Press.
[53]
M. Weinzierl. 2013. Hybrid Geometric-Algebraic Matrix-Free Multigrid on Spacetrees. PhD Thesis. TU München.
[54]
T. Weinzierl. 2009. A Framework for Parallel PDE Solvers on Multiscale Adaptive Cartesian Grids. Verlag Dr. Hut.
[55]
T. Weinzierl. 2017. The Peano software—Parallel, automaton-based, dynamically adaptive grid traversals. Technical Report. arXiv:1506.04496.
[56]
T. Weinzierl et al. 2012. Peano—a Framework for PDE Solvers on Spacetree Grids. Retrieved from http://www.peano-framework.orgwww.peano-framework.org.
[57]
T. Weinzierl, M. Bader, K. Unterweger, and R. Wittmann. 2014. Block fusion on dynamically adaptive spacetree grids for shallow water waves. Parallel Process. Lett. 24, 3 (2014), 1441006.
[58]
T. Weinzierl and M. Mehl. 2011. Peano -- A traversal and storage scheme for octree-like adaptive cartesian multiscale grids. SIAM J. Sci. Comput. 33, 5 (2011), 2732--2760.
[59]
R. Wienands and H. Köstler. 2010. A practical framework for the construction of prolongation operators for multigrid based on canonical basis functions. Comput. Visual. Sci. 13 (2010), 207--220. Issue 5.
[60]
I. Yavneh. 1998. Coarse-grid correction for nonelliptic and singular perturbation problems. SIAM J. Sci. Comput. 19, 5 (1998), 1682--1699.
[61]
I. Yavneh and M. Weinzierl. 2012. Nonsymmetric black box multigrid with coarsening by three. Numer. Lin. Alg. Appl. 19, 2 (2012), 246--262.

Cited By

View all
  • (2020)Enclave Tasking for DG Methods on Dynamically Adaptive MeshesSIAM Journal on Scientific Computing10.1137/19M127619442:3(C69-C96)Online publication date: 5-May-2020
  • (2020)ExaHyPE: An engine for parallel dynamically adaptive simulations of wave problemsComputer Physics Communications10.1016/j.cpc.2020.107251(107251)Online publication date: Mar-2020
  • (2020)Lazy Stencil Integration in Multigrid AlgorithmsParallel Processing and Applied Mathematics10.1007/978-3-030-43229-4_3(25-37)Online publication date: 19-Mar-2020
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software  Volume 44, Issue 3
September 2018
291 pages
ISSN:0098-3500
EISSN:1557-7295
DOI:10.1145/3175005
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 06 February 2018
Accepted: 01 November 2017
Revised: 01 July 2017
Received: 01 November 2016
Published in TOMS Volume 44, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. BoxMG
  2. Geometric multigrid
  3. adaptive mesh refinement
  4. algebraic multigrid
  5. full approximation storage
  6. matrix-free
  7. operator compression
  8. parallel linear algebra

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • European Unions Horizon 2020 research and innovation programme

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)8
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2020)Enclave Tasking for DG Methods on Dynamically Adaptive MeshesSIAM Journal on Scientific Computing10.1137/19M127619442:3(C69-C96)Online publication date: 5-May-2020
  • (2020)ExaHyPE: An engine for parallel dynamically adaptive simulations of wave problemsComputer Physics Communications10.1016/j.cpc.2020.107251(107251)Online publication date: Mar-2020
  • (2020)Lazy Stencil Integration in Multigrid AlgorithmsParallel Processing and Applied Mathematics10.1007/978-3-030-43229-4_3(25-37)Online publication date: 19-Mar-2020
  • (2020)Stabilized asynchronous fast adaptive composite multigrid using additive dampingNumerical Linear Algebra with Applications10.1002/nla.232828:3Online publication date: 24-Aug-2020
  • (2020)Delayed approximate matrix assembly in multigrid with dynamic precisionsConcurrency and Computation: Practice and Experience10.1002/cpe.594133:11Online publication date: 22-Jul-2020
  • (2019)The Peano Software—Parallel, Automaton-based, Dynamically Adaptive Grid TraversalsACM Transactions on Mathematical Software10.1145/331979745:2(1-41)Online publication date: 18-Apr-2019

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media