[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3038439.3038445acmconferencesArticle/Chapter ViewAbstractPublication PagesiuiConference Proceedingsconference-collections
research-article

BCI for Physiological Text Annotation

Published: 13 March 2017 Publication History

Abstract

Automatic annotation of media content has become a critically important task for many digital services as the quantity of available online media content has grown exponentially. One approach is to annotate the content using the physiological responses of the media consumer. In the present paper, we reflect on three case studies that use brain signals for implicit text annotation to discuss the challenges faced when bringing passive brain-computer interfaces for physiological text annotation to the real world.

References

[1]
G. Adomavicius and A. Tuzhilin. 2005. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. Knowledge and Data Engineering, IEEE Transactions on 17, 6 (June 2005), 734--749. 1041--4347 http://dx.doi.org/10.1109/TKDE.2005.99
[2]
N. A. Badcock, P. Mousikou, Y. Mahajan, P. de Lissa, J. Thie, and G. McArthur. 2013. Validation of the Emotiv EPOC® EEG gaming system for measuring research quality auditory ERPs. PeerJ e38 (2013).
[3]
Oswald Barral, Manuel J.A. Eugster, Tuukka Ruotsalo, Michiel M. Spapé, Ilkka Kosunen, Niklas Ravaja, Samuel Kaski, and Giulio Jacucci. 2015. Exploring Peripheral Physiology As a Predictor of Perceived Relevance in Information Retrieval. In Proceedings of the 20th International Conference on Intelligent User Interfaces (IUI '15). ACM, New York, NY, USA, 389--399. x978--1--4503--3306--1 http://dx.doi.org/10.1145/2678025.2701389
[4]
Oswald Barral, Ilkka Kosunen, Tuukka Ruotsalo, Michiel M. Spapé, Manuel J. A. Eugster, Niklas Ravaja, Samuel Kaski, and Giulio Jacucci. 2016. Extracting relevance and affect information from physiological text annotation. User Modeling and User-Adapted Interaction 26, 5 (2016), 493--520. 1573--1391 http://dx.doi.org/10.1007/s11257-016--9184--8
[5]
James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet, Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston, and Dasarathi Sampath. 2010. The YouTube Video Recommendation System. In Proceedings of the Fourth ACM Conference on Recommender Systems (RecSys '10). ACM, New York, NY, USA, 293--296. x978--1--60558--906-0 http://dx.doi.org/10.1145/1864708.1864770
[6]
Manuel J.A. Eugster, Tuukka Ruotsalo, Michiel M. Spapé, Ilkka Kosunen, Oswald Barral, Niklas Ravaja, Giulio Jacucci, and Samuel Kaski. 2014. Predicting Term-relevance from Brain Signals. In Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR '14). ACM, New York, NY, USA, 425--434. x978--1--4503--2257--7 http://dx.doi.org/10.1145/2600428.2609594
[7]
Manuel J. A. Eugster, Tuukka Ruotsalo, Michiel M. Spapé, Oswald Barral, Niklas Ravaja, Giulio Jacucci, and Samuel Kaski. 2016. Natural brain-information interfaces: Recommending information by relevance inferred from human brain signals. Scientific Reports 6 (December 2016), 38580. http://dx.doi.org/10.1038/srep38580
[8]
Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl. 2004. Evaluating Collaborative Filtering Recommender Systems. ACM Trans. Inf. Syst. 22, 1 (Jan. 2004), 5--53. 1046--8188 http://dx.doi.org/10.1145/963770.963772
[9]
Karen Spärck Jones. 1972. A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation 28 (1972), 11--21.
[10]
Diane Kelly and Xin Fu. 2006. Elicitation of Term Relevance Feedback: An Investigation of Term Source and Context. In Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '06). ACM, New York, NY, USA, 453--460. x1--59593--369--7 http://dx.doi.org/10.1145/1148170.1148249
[11]
Diane Kelly and Jaime Teevan. 2003. Implicit Feedback for Inferring User Preference: A Bibliography. SIGIR Forum 37, 2 (Sept. 2003), 18--28. 0163--5840 http://dx.doi.org/10.1145/959258.959260
[12]
Wolfgang Klimesch. 2012. Alpha-band oscillations, attention, and controlled access to stored information. Trends in cognitive sciences 16, 12 (December 2012), 606--617. 1364--6613 http://dx.doi.org/10.1016/j.tics.2012.10.007
[13]
Yashar Moshfeghi and Joemon M. Jose. 2013. An Effective Implicit Relevance Feedback Technique Using Affective, Physiological and Behavioural Features. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '13). ACM, New York, NY, USA, 133--142. x978--1--4503--2034--4 http://dx.doi.org/10.1145/2484028.2484074
[14]
M. Soleymani and M. Pantic. 2012. Human-centered implicit tagging: Overview and perspectives. In Systems, Man, and Cybernetics (SMC), 2012 IEEE International Conference on. 3304--3309. http://dx.doi.org/10.1109/ICSMC.2012.6378301
[15]
Marko Tkalcic, A. Kosir, and Jurij Tasic. 2011. Affective recommender systems: the role of emotions in recommender systems. In Proc. The RecSys 2011 Workshop on Human Decision Making in Recommender Systems. Citeseer, 9--13.
[16]
Erin Treacy Solovey, Daniel Afergan, Evan M. Peck, Samuel W. Hincks, and Robert J.K. Jacob. 2015. Designing Implicit Interfaces for Physiological Computing: Guidelines and Lessons Learned Using fNIRS. ACM Trans. Comput.-Hum. Interact. 21, 6, Article 35 (Jan. 2015), 27 pages. 1073-0516 http://dx.doi.org/10.1145/2687926
[17]
Markus A Wenzel, Jan-Eike Golenia, and Benjamin Blankertz. 2016. Classification of Eye Fixation Related Potentials for Variable Stimulus Saliency. Frontiers in Neuroscience 10 (2016), 23. x1662--4548; 1662--453X http://dx.doi.org/10.3389/fnins.2016.00023

Cited By

View all
  • (2020)Physiologically Driven Storytelling: Concept and Software ToolProceedings of the 2020 CHI Conference on Human Factors in Computing Systems10.1145/3313831.3376643(1-13)Online publication date: 21-Apr-2020

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
BCIforReal '17: Proceedings of the 2017 ACM Workshop on An Application-oriented Approach to BCI out of the laboratory
March 2017
50 pages
ISBN:9781450349017
DOI:10.1145/3038439
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 March 2017

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. passive BCI
  2. physiological computing
  3. physiological text annotation

Qualifiers

  • Research-article

Funding Sources

  • Academy of Finland
  • EU comission
  • Finnish Centre of Excellence in Computational Inference Research COIN

Conference

IUI'17
Sponsor:

Acceptance Rates

BCIforReal '17 Paper Acceptance Rate 8 of 12 submissions, 67%;
Overall Acceptance Rate 8 of 12 submissions, 67%

Upcoming Conference

IUI '25

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)7
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2020)Physiologically Driven Storytelling: Concept and Software ToolProceedings of the 2020 CHI Conference on Human Factors in Computing Systems10.1145/3313831.3376643(1-13)Online publication date: 21-Apr-2020

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media