[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article
Free access

Discovering Internet marketing intelligence through online analytical web usage mining

Published: 01 December 1998 Publication History

Abstract

This article describes a novel way of combining data mining techniques on Internet data in order to discover actionable marketing intelligence in electronic commerce scenarios. The data that is considered not only covers various types of server and web meta information, but also marketing data and knowledge. Furthermore, heterogeneity resolution thereof and Internet- and electronic commerce-specific pre-processing activities are embedded. A generic web log data hypercube is formally defined and schematic designs for analytical and predictive activities are given. From these materialised views, various online analytical web usage data mining techniques are shown, which include marketing expertise as domain knowledge and are specifically designed for electronic commerce purposes.

References

[1]
{AB98} S. S. Anand, A. G. Büchner. Decision Support through Data Mining, FT Pitman Publishers, 1998.
[2]
{ABH95} S. S. Anand, D. A. Bell, J. G. Hughes. The Role of Domain Knowledge in Data Mining, in Proc. 4th Int'l. ACM Conf. on Information and Knowledge Management, pp. 37-43, 1995.
[3]
{APHB98} S. S. Anand, A. R. Patrick. J. G. Hughes, D. A. Bell. A Data Mining Methodology for Cross Sales, Knowledge-based Systems Journal, 10: 449-461, 1998.
[4]
{AS95} R. Agrawal, R. Srikant. Mining Sequential Patterns, in Proc. 11th Int'l. Conf. on Data Engineering, pp. 3-14, 1995.
[5]
{AST+97} S. S. Anand, B. W. Scotney, M. G. Tan, S. I. McClean, D. A. Bell, J. G. Hughes, I. C. Magill. Designing a Kernel for Data Mining, in IEEE Expert, 12(2): 65-74. 1997.
[6]
{BBH98} A. G. Büchner, D. A. Bell, J. G. Hughes. A Contextualised Object Data Model based on Semantic Values, in Proc. 11th Int'l. Conf. on Parallel and Distributed Computing Systems, pp. 171-176, 1998.
[7]
{BMAH98} A. G. Büchner, M. D. Mulvenna, S. S. Anand. J. G. Hughes. An Internet-enabled Knowledge Discovery Process, submitted for publication. 1998.
[8]
{BS97} A. Berson, S. J. Smith. Data Warehousing. Data Mining and OLAP, McGraw Hill, 1997.
[9]
{CD97} S. Chaudhuri, U. Dayal. An Overview of Data Warehousing and OLAP Technology, Technical Report MSR-TR-97-14, Microsoft Research, 1997.
[10]
{CMS97} R. Cooley, B. Mobasher, J. Srivastava. Web Mining: Information and Pattern Discovery on the World Wide Web, in Proc. 9th IEEE Int'l Conf. on Tools with Artificial Intelligence, 1997.
[11]
{CMS99} R. Cooley, B. Mobasher, J. Srivastava. Data Preparation for Mining World Wide Web Browsing Patterns, in Knowledge and Information Systems, 1(1), forthcoming, 1999.
[12]
{CPY96} M. S. Chen, J. S. Park, P. S. Yu. Data Mining for Traversal Patterns in a Web Environment, in Proc. 16th Int'l. Conf. on Distributed Computing Systems, pp. 385-392, 1996.
[13]
{Etz96} O. Etzioni. The World-Wide Web: Quagmire or Gold Mine?. in Comm. of the ACM, 39(11): 65-68, 1996.
[14]
{HF95} J. Han, Y. Fu. Discovery of multiple-level association rules in relational databases, in Proc. 21st Int'l Conf. on Very Large Databases, pp. 420-431, 1995.
[15]
{HRU96} V. Harinarayan, A. Rajarman, J. D. Ullman. Implementing data cubes efficiently, in Proc. ACM SIGMOD Int'l. Conf. on Management of Data, pp. 205-216, 1996.
[16]
{KCGS93} W. Kim, I. Choi, S. K. Gala, M. Scheevel. On Resolving Schematic Heterogeneity in Multidatabase Systems, in Distributed and Parallel Databases 1(3): 251-279, 1993.
[17]
{KS98} V. Kashyap, A. Sheth. Semantic Heterogeneity in Global Information Systems: the Role of Metadata. Context and Ontology, in M.P. Papazoglou, G. Schlageter (eds). Cooperative Information Systems, pp. 139-178, 1998.
[18]
{MBNG97} M. D. Mulvenna, A. G. Büchner, M. T. Norwood, C. Grant. The Soft-Push: Mining Internet Data for Marketing Intelligence, in Proc. Working Conf. on Electronic Commerce in the Framework of Mediterranean Countries Development, pp. 333-349, 1997.
[19]
{MNB98} M. D. Mulvenna, M. T. Norwood, A. G. Büchner. Data-driven Marketing, in Int'l. Journal of Electronic Markets, 8(3) 32-35, 1998.
[20]
{MT96} H. Manilla, H. Toivonen. Discovering generalized episodes using minimal occurences, in Proc. 2nd Int'l. Conf. on Knowledge Discovery and Data Mining, pp. 146-151, 1996.
[21]
{W3C98a} World Wide Web Consortium. http://www.w3.org /RDF/, 1998.
[22]
{W3C98b} World Wide Web Consortium. http://www.w3.org /XML/, 1998.
[23]
{YJGD96} T. Yan, M. Jacobsen, H. Garcia-Molina, U. Dayal, From User Access Patterns to dynamic Hypertext Linking, in 5th Int'l. WWW Conf., 1996.
[24]
{ZXH98} O. R. Zaïane, M. Xin, J. Han. Discovering Web Access Patterns and Trends by Applying OLAP and Data Mining Technology on Web Logs, in Proc. Advances in Digital Libraries Conf., pp. 19-29, 1998.

Cited By

View all

Index Terms

  1. Discovering Internet marketing intelligence through online analytical web usage mining

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image ACM SIGMOD Record
          ACM SIGMOD Record  Volume 27, Issue 4
          Dec. 1998
          89 pages
          ISSN:0163-5808
          DOI:10.1145/306101
          Issue’s Table of Contents

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          Published: 01 December 1998
          Published in SIGMOD Volume 27, Issue 4

          Check for updates

          Qualifiers

          • Article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)199
          • Downloads (Last 6 weeks)27
          Reflects downloads up to 03 Dec 2024

          Other Metrics

          Citations

          Cited By

          View all
          • (2024)Empowering Marketing Intelligence via Text AnalyticsMarketing Innovation Strategies and Consumer Behavior10.4018/979-8-3693-4195-7.ch002(31-57)Online publication date: 5-Apr-2024
          • (2024)Information Retrieval System on the WebSustainable Development in AI, Blockchain, and E-Governance Applications10.4018/979-8-3693-1722-8.ch006(93-107)Online publication date: 9-Feb-2024
          • (2024)Modeling and supporting adaptive Complex Data-Intensive Web Systems via XML and the O-O paradigm: The OO-XAHM modelArray10.1016/j.array.2024.10036323(100363)Online publication date: Sep-2024
          • (2023)Wachstumsherausforderungen bei der Etablierung digitaler PlattformenMarketing und Innovation in disruptiven Zeiten10.1007/978-3-658-38572-9_4(81-106)Online publication date: 21-Jan-2023
          • (2022)The application of AI marketing in enterprise management analysisBCP Business & Management10.54691/bcpbm.v34i.306334(548-553)Online publication date: 14-Dec-2022
          • (2022)Applying the CRISP-DM data mining process in the financial services industryData & Knowledge Engineering10.1016/j.datak.2022.102013139:COnline publication date: 1-May-2022
          • (2020)They Know What You Will Do Next ClickInterdisciplinary Approaches to Digital Transformation and Innovation10.4018/978-1-7998-1879-3.ch005(100-122)Online publication date: 2020
          • (2020)Unsupervised Stochastic Learning for User ProfilesComputational Mathematics and Variational Analysis10.1007/978-3-030-44625-3_16(279-297)Online publication date: 6-Jun-2020
          • (2018)Religious Tourism Experience Model (RTEM)Handbook of Research on Technological Developments for Cultural Heritage and eTourism Applications10.4018/978-1-5225-2927-9.ch001(1-29)Online publication date: 2018
          • (2018)Use of internet as product marketing media using internet marketing methodIOP Conference Series: Materials Science and Engineering10.1088/1757-899X/407/1/012053407(012053)Online publication date: 26-Sep-2018
          • Show More Cited By

          View Options

          View options

          PDF

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media