[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
review-article
Free access

Discovering genes involved in disease and the mystery of missing heritability

Published: 28 September 2015 Publication History

Abstract

The challenge of missing heritability offers great contribution options for computer scientists.

Supplementary Material

PDF File (p80-eskin_suppl.pdf)
Supplemental material.

References

[1]
Abecasis, G.R., Auton, A., Brooks, L.D., DePristo, M.A., et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 7422 (2012), 56--65.
[2]
Berndt, S.I., Gustafsson, S., Mägi, R., Ganna, A., et al. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat. Genet. 45, 5 (2013), 501--512.
[3]
Bloom, J.S., Ehrenreich, I.M., Loo, W.T., Lite, T.-L.V.L., et al. Finding the sources of missing heritability in a yeast cross. Nature 494, 7436 (2013), 234--237.
[4]
Devlin, B., Roeder, K. Genomic control for association studies. Biometrics 55, 4 (1999), 997--1004.
[5]
Fisher, R.A. The correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb. 52 (1918), 399--433.
[6]
Golan, D., Rosset, S. Accurate estimation of heritability in genome wide studies using random effects models. Bioinformatics 27, 13 (2011), i317--i323.
[7]
Gunderson, K.L., Steemers, F.J., Lee, G., Mendoza, L.G., et al. A genome-wide scalable SNP genotyping assay using microarray technology. Nat. Genet. 37, 5 (2005), 549--554.
[8]
Hartl, D.L., Clark, A.G. Sunderland, MA: Sinauer Associates, 2007.
[9]
Henderson, C.R. Best linear unbiased estimation and prediction under a selection model. Biometrics 31, 2 (1975), 423--447.
[10]
Hindorff, L.A., Sethupathy, P., Junkins, H.A., Ramos, E.M., et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 106, 23 (2009), 9362--9367.
[11]
Kang, H.M., Sul, J.H., Service, S.K., Zaitlen, N.A., Kong, S.-Y.Y., Freimer, N.B., Sabatti, C., Eskin, E. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42, 4 (2010), 348--354.
[12]
Kang, H.M., Zaitlen, N.A., Wade, C.M., Kirby, A., Heckerman, D., Daly, M.J., Eskin, E. Efficient control of population structure in model organism association mapping. Genetics 178, 3 (2008), 1709--1723.
[13]
Kenny, E.E., Kim, M., Gusev, A., Lowe, J.K., Salit, J., Smith, J.G., Kovvali, S., Kang, H.M., Newton-Cheh, C., Daly, M.J., Stoffel, M., Altshuler, D.M., Friedman, J.M., Eskin, E., Breslow, J.L., Pe'er, I. Increased power of mixed models facilitates association mapping of 10 loci for metabolic traits in an isolated population. Hum. Mol. Genet. 20, 4 (2010), 827--839.
[14]
Lippert, C., Listgarten, J., Liu, Y., Kadie, C.M., Davidson, R.I., Heckerman, D. Fast linear mixed models for genome-wide association studies. Nat. Methods 8, 10 (2011), 833--835.
[15]
Macgregor, S., Cornes, B.K., Martin, N.G., Visscher, P.M. Bias, precision and heritability of self-reported and clinically measured height in Australian twins. Hum. Genet. 120, 4 (2006), 571--580.
[16]
Manolio, T.A., Brooks, L.D., Collins, F.S. A HapMap harvest of insights into the genetics of common disease. J. Clin. Invest. 118, 5 (2008), 1590--1605.
[17]
Manolio, T.A., Collins, F.S., Cox, N.J., Goldstein, D.B., et al. Finding the missing heritability of complex diseases. Nature 461, 7265 (2009), 747--753.
[18]
Matsuzaki, H., Dong, S., Loi, H., Di, X., Liu, G., et al. Genotyping over 100,000 SNPs on a pair of oligonucleotide arrays. Nat. Methods 1, 2 (2004), 109--111.
[19]
Meuwissen, T.H., Hayes, B.J., Goddard, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 4 (2001), 1819--1829.
[20]
Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E., et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 8 (2006), 904--909.
[21]
Purcell, S.M., Wray, N.R., Stone, J.L., Visscher, P.M., et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 7256 (2009), 748--752.
[22]
Rakitsch, B., Lippert, C., Stegle, O., Borgwardt, K. A lasso multi-marker mixed model for association mapping with population structure correction. Bioinformatics 29, 2 (2012), 206--214.
[23]
Randall, J.C., Winkler, T.W., Kutalik, Z., Berndt, S.I., et al. Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. PLoS Genet. 9, 6 (2013), e1003500.
[24]
Robinson, G.K. That BLUP is a good thing: The estimation of random effects. Stat. Sci. 6, 1 (1991), 15--32.
[25]
Sabatti, C., Service, S.K., Hartikainen, A.-L.L., Pouta, A., et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat. Genet. 41, 1 (2009), 35--46.
[26]
Silventoinen, K., Sammalisto, S., Perola, M., Boomsma, D.I., et al. Heritability of adult body height: A comparative study of twin cohorts in eight countries. Twin Res. 6, 5 (2003), 399--408.
[27]
Stram, D.O. Design, Analysis, and Interpretation of Genome-Wide Association Scans. Springer, 2013.
[28]
The International HapMap Consortium. A haplotype map of the human genome. Nature 437, 7063 (2005), 1299.
[29]
van Dongen, J., Slagboom, P.E., Draisma, H.H.M., et al. The continuing value of twin studies in the omics era. Nat. Rev. Genet. 7 (2012).
[30]
Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 7145 (2007), 661--678.
[31]
Welter, D., MacArthur, J., Morales, J., Burdett, T., et al. The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucl. Acids Res. 42, Database issue (2014), D1001--D1006.
[32]
Yang, J., Benyamin, B., McEvoy, B.P., Gordon, S., et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 7 (2010), 565--569.
[33]
Zhou, X., Carbonetto, P., Stephens, M. Polygenic modeling with Bayesian sparse linear mixed models. PLoS Genet. 9, 2 (2013), e1003264.
[34]
Zhou, X., Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44, 7 (2012), 821--824.
[35]
Zuk, O., Hechter, E., Sunyaev, S.R., Lander, E.S. The mystery of missing heritability: Genetic interactions create phantom heritability. Proc. Natl. Acad. Sci. USA 109, 4 (2012), 1193--1198.

Cited By

View all
  • (2025)Cross-species analysis of genetic architecture and polygenic risk scores for non-contact ACL rupture in dogs and humansCommunications Biology10.1038/s42003-024-07395-98:1Online publication date: 9-Jan-2025
  • (2022)Genomic Regions Associated With Salinity Stress Tolerance in Tropical Maize (Zea Mays L.)Frontiers in Plant Science10.3389/fpls.2022.86927013Online publication date: 31-May-2022
  • (2022)Leveraging pleiotropy for joint analysis of genome-wide association studies with per trait interpretationsPLOS Genetics10.1371/journal.pgen.101044718:11(e1010447)Online publication date: 7-Nov-2022
  • Show More Cited By

Index Terms

  1. Discovering genes involved in disease and the mystery of missing heritability

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Communications of the ACM
      Communications of the ACM  Volume 58, Issue 10
      October 2015
      87 pages
      ISSN:0001-0782
      EISSN:1557-7317
      DOI:10.1145/2830674
      • Editor:
      • Moshe Y. Vardi
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 28 September 2015
      Published in CACM Volume 58, Issue 10

      Permissions

      Request permissions for this article.

      Check for updates

      Qualifiers

      • Review-article
      • Popular
      • Refereed

      Funding Sources

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)118
      • Downloads (Last 6 weeks)24
      Reflects downloads up to 15 Feb 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2025)Cross-species analysis of genetic architecture and polygenic risk scores for non-contact ACL rupture in dogs and humansCommunications Biology10.1038/s42003-024-07395-98:1Online publication date: 9-Jan-2025
      • (2022)Genomic Regions Associated With Salinity Stress Tolerance in Tropical Maize (Zea Mays L.)Frontiers in Plant Science10.3389/fpls.2022.86927013Online publication date: 31-May-2022
      • (2022)Leveraging pleiotropy for joint analysis of genome-wide association studies with per trait interpretationsPLOS Genetics10.1371/journal.pgen.101044718:11(e1010447)Online publication date: 7-Nov-2022
      • (2022)A comprehensive comparison of multilocus association methods with summary statistics in genome-wide association studiesBMC Bioinformatics10.1186/s12859-022-04897-323:1Online publication date: 30-Aug-2022
      • (2022)Accurate modeling of replication rates in genome-wide association studies by accounting for Winner’s Curse and study-specific heterogeneityG3 Genes|Genomes|Genetics10.1093/g3journal/jkac26112:12Online publication date: 17-Oct-2022
      • (2022)DeepNull models non-linear covariate effects to improve phenotypic prediction and association powerNature Communications10.1038/s41467-021-27930-013:1Online publication date: 11-Jan-2022
      • (2020)How Can Gene-Expression Information Improve Prognostic Prediction in TCGA Cancers: An Empirical Comparison Study on Regularization and Mixed Cox ModelsFrontiers in Genetics10.3389/fgene.2020.0092011Online publication date: 21-Aug-2020
      • (2020)Phenotype Heritability in Holobionts: An Evolutionary ModelSymbiosis: Cellular, Molecular, Medical and Evolutionary Aspects10.1007/978-3-030-51849-3_7(199-223)Online publication date: 3-Dec-2020
      • (2019)Genome Association Study for Visual Scores in Nellore Cattle Measured at WeaningBMC Genomics10.1186/s12864-019-5520-920:1Online publication date: 20-Feb-2019
      • (2018)Population structure in genetic studies: Confounding factors and mixed modelsPLOS Genetics10.1371/journal.pgen.100730914:12(e1007309)Online publication date: 27-Dec-2018
      • Show More Cited By

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDFChinese translation

      eReader

      View online with eReader.

      eReader

      Digital Edition

      View this article in digital edition.

      Digital Edition

      Magazine Site

      View this article on the magazine site (external)

      Magazine Site

      Login options

      Full Access

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media