[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2808492.2808551acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicimcsConference Proceedingsconference-collections
research-article

Salient object detection in RGB-D image based on saliency fusion and propagation

Published: 19 August 2015 Publication History

Abstract

Automatic detection of salient objects in images attracts much research attention for its usage in numerous multimedia applications. In this paper, we propose a saliency fusion and propagation strategy based salient object detection method for RGB-D images, in which multiple cues are fused to provide high precision detection result and saliency propagation is utilized to improve the completeness of salient objects. To each RGB-D image, we firstly generate the saliency maps based on color cue, location cue and depth cue independently. Then, we fuse the saliency maps and obtain a high precision saliency map. Finally, we propagate saliency to obtain more complete salient objects. We evaluate the proposed method on two public data sets for salient object detection, NJU400 and RGBD Benchmark. The experimental results demonstrate saliency fusion and propagation are effective in salient object detection and our method outperforms the state-of-the-art methods.

References

[1]
R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk. Frequency-tuned salient region detection. In CVPR, pages 1597--1604. IEEE, 2009.
[2]
F. Chen, C. Lang, S. Feng, and Z. Song. Depth information fused salient object detection. In ICIMCS, page 66. ACM, 2014.
[3]
Y. Chen, Y. Pan, M. Song, and M. Wang. Improved seam carving combining with 3d saliency for image retargeting. NEUCOM, 151: 645--653, 2015.
[4]
M.-M. Cheng, N. J. Mitra, X. Huang, P. H. S. Torr, and S.-M. Hu. Global contrast based salient region detection. TPAMI, 37(3):569--582, 2015.
[5]
Y. Cheng, H. Fu, X. Wei, J. Xiao, and X. Cao. Depth enhanced saliency detection method. In ICIMCS, page 23. ACM, 2014.
[6]
K. Desingh, K. M. Krishna, D. Rajan, and C. Jawahar. Depth really matters: Improving visual salient region detection with depth. In BMVC, 2013.
[7]
Y. Fang, J. Wang, M. Narwaria, P. Le Callet, and W. Lin. Saliency detection for stereoscopic images. In VCIP, pages 1--6. IEEE, 2013.
[8]
C. Guo and L. Zhang. A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression. TIP, 19(1):185--198, 2010.
[9]
R. Ju, L. Ge, W. Geng, T. Ren, and G. Wu. Depth saliency based on anisotropic center-surround difference. IEEE, 2014.
[10]
C. Lang, T. V. Nguyen, H. Katti, K. Yadati, M. Kankanhalli, and S. Yan. Depth matters: Influence of depth cues on visual saliency. In ECCV, pages 101--115. Springer, 2012.
[11]
L. Li, S. Jiang, Z.-J. Zha, Z. Wu, and Q. Huang. Partial-duplicate image retrieval via saliency-guided visual matching. IEEE MM, 20(3):13--23, 2013.
[12]
Y. Li, X. Hou, C. Koch, J. M. Rehg, and A. L. Yuille. The secrets of salient object segmentation. In CVPR, pages 280--287. IEEE, 2014.
[13]
T. Liu, Z. Yuan, J. Sun, J. Wang, N. Zheng, X. Tang, and H.-Y. Shum. Learning to detect a salient object. TPAMI, 33(2):353--367, 2011.
[14]
Z. Liu, W. Zou, and O. Le Meur. Saliency tree: A novel saliency detection framework. TIP, 23(5):1937--1952, 2013.
[15]
Y. Niu, Y. Geng, X. Li, and F. Liu. Leveraging stereopsis for saliency analysis. In CVPR, pages 454--461. IEEE, 2012.
[16]
H. Peng, B. Li, W. Xiong, W. Hu, and R. Ji. Rgbd salient object detection: A benchmark and algorithms. In ECCV, pages 92--109. Springer, 2014.
[17]
T. Ren, R. Ju, Y. Liu, and G. Wu. How important is location in saliency detection. In ICIMCS, page 10. ACM, 2014.
[18]
T. Ren, Y. Liu, and G. Wu. Image retargeting based on global energy optimization. In ICME, pages 406--409. IEEE, 2009.
[19]
Y. Tang, R. Tong, M. Tang, and Y. Zhang. Depth incorporating with color improves salient object detection. TVC, pages 1--11, 2015.
[20]
X. Xu, W. Geng, R. Ju, Y. Yang, T. Ren, and G. Wu. Obsir: Object-based stereo image retrieval. In ICME, pages 1--6. IEEE, 2014.

Cited By

View all
  • (2023)Depth guided feature selection for RGBD salient object detectionNeurocomputing10.1016/j.neucom.2022.11.030519(57-68)Online publication date: Jan-2023
  • (2023)Scale Adaptive Fusion Network for RGB-D Salient Object DetectionComputer Vision – ACCV 202210.1007/978-3-031-26313-2_37(608-625)Online publication date: 2-Mar-2023
  • (2022)A cascaded refined rgb-d salient object detection network based on the attention mechanismApplied Intelligence10.1007/s10489-022-04186-953:11(13527-13548)Online publication date: 12-Oct-2022
  • Show More Cited By

Index Terms

  1. Salient object detection in RGB-D image based on saliency fusion and propagation

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ICIMCS '15: Proceedings of the 7th International Conference on Internet Multimedia Computing and Service
    August 2015
    397 pages
    ISBN:9781450335287
    DOI:10.1145/2808492
    • General Chairs:
    • Ramesh Jain,
    • Shuqiang Jiang,
    • Program Chairs:
    • John Smith,
    • Jitao Sang,
    • Guohui Li
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 19 August 2015

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. RGB-D image
    2. multiple cues fusion
    3. saliency propagation
    4. salient object detection

    Qualifiers

    • Research-article

    Conference

    ICIMCS '15

    Acceptance Rates

    ICIMCS '15 Paper Acceptance Rate 20 of 128 submissions, 16%;
    Overall Acceptance Rate 163 of 456 submissions, 36%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)6
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 21 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Depth guided feature selection for RGBD salient object detectionNeurocomputing10.1016/j.neucom.2022.11.030519(57-68)Online publication date: Jan-2023
    • (2023)Scale Adaptive Fusion Network for RGB-D Salient Object DetectionComputer Vision – ACCV 202210.1007/978-3-031-26313-2_37(608-625)Online publication date: 2-Mar-2023
    • (2022)A cascaded refined rgb-d salient object detection network based on the attention mechanismApplied Intelligence10.1007/s10489-022-04186-953:11(13527-13548)Online publication date: 12-Oct-2022
    • (2021)Salient Object Detection in Stereoscopic 3D Images Using a Deep Convolutional Residual AutoencoderIEEE Transactions on Multimedia10.1109/TMM.2020.302516623(3388-3399)Online publication date: 2021
    • (2021)RGB-D salient object detection: A surveyComputational Visual Media10.1007/s41095-020-0199-z7:1(37-69)Online publication date: 7-Jan-2021
    • (2020)Hybrid-Attention Network for RGB-D Salient Object DetectionApplied Sciences10.3390/app1017580610:17(5806)Online publication date: 21-Aug-2020
    • (2020)RGBT Salient Object Detection: Benchmark and A Novel Cooperative Ranking ApproachIEEE Transactions on Circuits and Systems for Video Technology10.1109/TCSVT.2019.295162130:12(4421-4433)Online publication date: Dec-2020
    • (2020)GFNet: Gate Fusion Network With Res2Net for Detecting Salient Objects in RGB-D ImagesIEEE Signal Processing Letters10.1109/LSP.2020.299347127(800-804)Online publication date: 2020
    • (2020)Multi-Modal Weights Sharing and Hierarchical Feature Fusion for RGBD Salient Object DetectionIEEE Access10.1109/ACCESS.2020.29715098(26602-26611)Online publication date: 2020
    • (2020)Multi-level progressive parallel attention guided salient object detection for RGB-D imagesThe Visual Computer10.1007/s00371-020-01821-9Online publication date: 18-Feb-2020
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media