[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
poster

Matrix Multiplication over Word-size Modular Fields Using Bini's Approximate Formula

Published: 05 February 2015 Publication History
First page of PDF

References

[1]
Bini, D. Relations between exact and approximate bilinear algorithms. applications. Calcolo 17 (1980), 87--97. 10.1007/BF02575865.
[2]
Boyer, B., Dumas, J.-G., Giorgi, P., Pernet, C., and Saunders, B. D. Principles of design for containers and solutions in the LinBox library. Abstract accepted for ICMS 2014, Aug. 2014.
[3]
Boyer, B., Dumas, J.-G., Pernet, C., and Zhou, W. Memory efficient scheduling of Strassen-Winograd's matrix multiplication algorithm. In Proceedings of the 2009 international symposium on Symbolic and algebraic computation (New York, NY, USA, 2009), ISSAC '09, ACM, pp. 55--62.
[4]
Dumas, J.-G., Giorgi, P., and Pernet, C. Dense linear algebra over word-size prime fields: the FFLAS and FFPACK packages. ACM Trans. Math. Softw. 35, 3 (2008), 1--42.
[5]
Strassen, V. Gaussian elimination is not optimal. Numerische Mathematik 13 (1969), 354--356.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Communications in Computer Algebra
ACM Communications in Computer Algebra  Volume 48, Issue 3/4
September/December 2014
123 pages
ISSN:1932-2232
EISSN:1932-2240
DOI:10.1145/2733693
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 05 February 2015
Published in SIGSAM-CCA Volume 48, Issue 3/4

Check for updates

Qualifiers

  • Poster

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 44
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Jan 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media