[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
interview

Exponential Lower Bounds for Polytopes in Combinatorial Optimization

Published: 06 May 2015 Publication History

Abstract

We solve a 20-year old problem posed by Yannakakis and prove that no polynomial-size linear program (LP) exists whose associated polytope projects to the traveling salesman polytope, even if the LP is not required to be symmetric. Moreover, we prove that this holds also for the cut polytope and the stable set polytope. These results were discovered through a new connection that we make between one-way quantum communication protocols and semidefinite programming reformulations of LPs.

Supplementary Material

Auxiliary material (auxiliary.html)
Note about the resolution of an open question in Section 5 (unrefereed material)

References

[1]
S. Aaronson. 2006. Lower bounds for local search by quantum arguments. SIAM J. Comput. 35, 4, 804--824. (Earlier version in STOC'04).
[2]
D. Aharonov and O. Regev. 2004. Lattice problems in NP ∩ coNP. In Proceedings of FOCS 2004. 362--371.
[3]
S. Arora, B. Bollobás, and L. Lovász. 2002. Proving integrality gaps without knowing the linear program. In Proceedings of FOCS 2002. 313--322.
[4]
S. Arora, B. Bollobás, L. Lovász, and I. Tourlakis. 2006. Proving integrality gaps without knowing the linear program. Theory Comput. 2, 19--51.
[5]
D. Avis and H. R. Tiwary. 2013. On the Extension Complexity of Combinatorial Polytopes. In Proceedings of ICALP(1) 2013. 57--68.
[6]
E. Balas. 1985. Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM J. Algeb. Disc. Meth. 6, 466--486.
[7]
E. Balas, S. Ceria, and G. Cornuéjols. 1993. A lift-and-project algorithm for mixed 0-1 programs. Math. Prog. 58, 295--324.
[8]
S. Benabbas and A. Magen. 2010. Extending SDP integrality gaps to Sherali-Adams with applications to quadratic programming and MaxCutGain. In Proceedings of IPCO 2010. 299--312.
[9]
G. Braun, S. Fiorini, S. Pokutta, and D. Steurer. 2012. Approximation limits of linear programs (beyond hierarchies). In Proceedings of FOCS 2012. 480--489.
[10]
G. Braun, S. Fiorini, and S. Pokutta. 2013a. Average case polyhedral complexity of the maximum stable set problem. arXiv:1311.4001.
[11]
G. Braun, R. Jain, T. Lee, and S. Pokutta. 2013b. Information-theoretic approximations of the nonnegative rank. ECCC Report no. 158 (2013).
[12]
G. Braun and S. Pokutta. 2013. Common information and unique disjointness. In Proceedings of FOCS 2013. 688--697.
[13]
M. Braverman and A. Moitra. 2013. An information complexity approach to extended formulations. In Proceedings of STOC 2013. 161--170.
[14]
J. Briët, D. Dadush, and S. Pokutta. 2013. On the existence of 0/1 polytopes with high semidefinite extension complexity. In Algorithms ESA 2013, Lecture Notes in Computer Science, vol. 8125, Springer, 217--228.
[15]
H. Buhrman, R. Cleve, S. Massar, and R. de Wolf. 2010. Nonlocality and communication complexity. Rev. Modern Phys. 82, 665.
[16]
J. Buresh-Oppenheim, N. Galesi, S. Hoory, A. Magen, and T. Pitassi. 2006. Rank bounds and integrality gaps for cutting planes procedures. Theory Comput. 2, 65--90.
[17]
S. O. Chan, J. R. Lee, P. Raghavendra, and D. Steurer. 2013. Approximate Constraint Satisfaction Requires Large LP Relaxations. In Proceedings of FOCS 2013, 350--359.
[18]
M. Charikar, K. Makarychev, and Y. Makarychev. 2009. Integrality gaps for Sherali-Adams relaxations. In Proceedings of STOC 2009. 283--292.
[19]
M. Conforti, G. Cornuéjols, and G. Zambelli. 2010. Extended formulations in combinatorial optimization. 4OR 8, 1--48.
[20]
G. B. Dantzig. 1951. Maximization of a linear function of variables subject to linear inequalities. In Activity Analysis of Production and Allocation, Cowles Commission Monograph No. 13, John Wiley & Sons Inc., New York, 339--347.
[21]
C. De Simone. 1990. The cut polytope and the Boolean quadric polytope. Disc. Math. 79, 71--75.
[22]
M. M. Deza and M. Laurent. 1997. Geometry of Cuts and Metrics. Algorithms and Combinatorics Series, vol. 15, Springer-Verlag.
[23]
A. Drucker and R. de Wolf. 2011. Quantum proofs for classical theorems. Theory Comput. Graduate Surveys 2.
[24]
Y. Faenza, S. Fiorini, R. Grappe, and H. R. Tiwary. 2011. Extended formulations, non-negative factorizations and randomized communication protocols. arXiv:1105.4127.
[25]
H. Fawzi and P. A. Parrilo. 2013. Exponential lower bounds on fixed-size PSD rank and semidefinite extension complexity. arXiv:1311.2571.
[26]
W. Fernandez de la Vega and C. Mathieu. 2007. Linear programming relaxation of Maxcut. In Proceedings of SODA 2007. 53--61.
[27]
S. Fiorini, V. Kaibel, K. Pashkovich, and D. O. Theis. 2011. Combinatorial bounds on nonnegative rank and extended formulations. arXiv:1111.0444.
[28]
S. Fiorini, S. Massar, M. K. Patra, and H. R. Tiwary. 2013. Generalised probabilistic theories and conic extensions of polytopes. CoRR abs/1310.4125.
[29]
K. Georgiou, A. Magen, T. Pitassi, and I. Tourlakis. 2010. Integrality gaps of 2&mins;o(1) for vertex cover SDPs in the Lovász-Schrijver hierarchy. SIAM J. Comput. 39, 3553--3570.
[30]
K. Georgiou, A. Magen, and M. Tulsiani. 2009. Optimal Sherali-Adams gaps from pairwise independence. In Proceedings of APPROX-RANDOM 2009. 125--139.
[31]
M. X. Goemans and D. P. Williamson. 1995. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115--1145.
[32]
J. Gouveia, P. A. Parrilo, and R. R. Thomas. 2010. Theta bodies for polynomial ideals. SIAM J. Optim. 20, 2097--2118.
[33]
J. Gouveia, P. A. Parrilo, and R. R. Thomas. 2013. Lifts of convex sets and cone factorizations. Math. Oper. Res.38, 2, 248--264.
[34]
J. Håstad. 1999. Clique is Hard to Approximate within n1&mins;ε. Acta Math. 182, 105--142. (Earlier version in Proceedings of FOCS 1996.)
[35]
H. Huang and B. Sudakov. 2012. A counterexample to the Alon-Saks-Seymour conjecture and related problems. Combinatorica32, 2, 205--219.
[36]
R. Jain, Y. Shi, Z. Wei, and S. Zhang. 2013. Efficient protocols for generating bipartite classical distributions and quantum states. IEEE Trans. Inf. Theory59, 8, 5171--5178.
[37]
V. Kaibel. 2011. Extended formulations in combinatorial optimization. Optima 85, 2--7.
[38]
V. Kaibel, K. Pashkovich, and D. O. Theis. 2010. Symmetry matters for the sizes of extended formulations. In Proceedings of IPCO 2010. 135--148.
[39]
V. Kaibel and S. Weltge. 2013. A short proof that the extension complexity of the correlation polytope grows exponentially. Discrete Computa. Geom. 53, 2, 396--401.
[40]
N. Karmarkar. 1984. A new polynomial time algorithm for linear programming. Combinatorica 4, 373--395.
[41]
I. Kerenidis and R. de Wolf. 2004. Exponential lower bound for 2-query locally decodable codes via a quantum argument. J. Comput. Syst. Sci. 69, 3, 395--420. (Earlier version in STOC 2003).
[42]
L. G. Khachiyan. 1979. A polynomial algorithm in linear programming. Dokl. Akad. Nauk SSSR244, 5, 1093--1096.
[43]
S. Khot, G. Kindler, E. Mossel, and R. O'Donnell. 2007. Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? SIAM J. Comput.37, 1, 319--357.
[44]
H. Klauck, T. Lee, and S. Zhang. 2011. An explicit and exponential separation between randomized and quantum correlation complexities. Unpublished manuscript from Oct/Nov 2011. Personal communication between Troy Lee and Ronald de Wolf, December 2011 at Centre for Quantum Technologies, Singapore.
[45]
E. Kushilevitz and N. Nisan. 1997. Communication Complexity. Cambridge University Press.
[46]
E. Kushilevitz and E. Weinreb. 2009a. The communication complexity of set-disjointness with small sets and 0-1 intersection. In Proceedings of FOCS 2009. 63--72.
[47]
E. Kushilevitz and E. Weinreb. 2009b. On the complexity of communication complexity. In Proceedings of STOC 2009. 465--474.
[48]
J. R. Lee, P. Raghavendra, and D. Steurer. 2015. Lower bounds on the size of semidefinite programming relaxations. In Proceedings of STOC 2015.
[49]
T. Lee and D. O. Theis. 2012. Support-based lower bounds for the positive semidefinite rank of a nonnegative matrix. arXiv:1203.3961.
[50]
L. Lovász. 1979. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory 25, 1--7.
[51]
L. Lovász. 2003. Semidefinite programs and combinatorial optimization. In Recent Advances in Algorithms and Combinatorics. CMS Books Math./Ouvrages Math, SMC Series, vol. 11, Springer, 137--194.
[52]
L. Lovász and M. Saks. 1993. Communication complexity and combinatorial lattice theory. J. Comput. Syst. Sci. 47, 322--349.
[53]
L. Lovász and A. Schrijver. 1991. Cones of matrices and set-functions and 0&mins;1 optimization. SIAM J. Optim. 1, 166--190.
[54]
N. D. Mermin. 2007. Quantum Computer Science: An Introduction. Cambridge University Press.
[55]
M. A. Nielsen and I. L. Chuang. 2000. Quantum Computation and Quantum Information. Cambridge University Press.
[56]
K. Pashkovich. 2009. Symmetry in extended formulations of the permutahedron. arXiv:0912.3446.
[57]
S. Pokutta and M. Van Vyve. 2013. A note on the extension complexity of the knapsack polytope. Oper. Res. Lett.41, 4, 347--350.
[58]
A. A. Razborov. 1992. On the distributional complexity of disjointness. Theoret. Comput. Sci.106, 2, 385--390.
[59]
T. Rothvoss. 2011. Some 0/1 polytopes need exponential size extended formulations. arXiv:1105.0036.
[60]
T. Rothvoss. 2014. The matching polytope has exponential extension complexity. In Proceedings of STOC 2014. 263--272.
[61]
G. Schoenebeck, L. Trevisan, and M. Tulsiani. 2007. Tight integrality gaps for Lovasz-Schrijver LP relaxations of vertex cover and max cut. In Proceedings of STOC 2007. 302--310.
[62]
A. Schrijver. 2003. Combinatorial Optimization. Polyhedra and Efficiency. Springer-Verlag.
[63]
C. E. Shannon. 1949. The synthesis of two-terminal switching circuits. Bell Syst. Tech. J. 25, 59--98.
[64]
H. D. Sherali and W. P. Adams. 1990. A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Disc. Math. 3, 411--430.
[65]
M. Sipser. 1996. Introduction to the Theory of Computation. PWS, Boston, MA.
[66]
E. R. Swart. 1986; revision 1987. P = NP. Tech. rep., University of Guelph.
[67]
F. Vanderbeck and L. A. Wolsey. 2010. Reformulation and decomposition of integer programs. In 50 Years of Integer Programming 1958-2008, M. Jünger, Th, M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and L. A. Wolsey, Eds., Springer, 431--502.
[68]
R. de Wolf. 2002. Quantum communication and complexity. Theoret. Comput. Sci. 287, 337--353.
[69]
R. de Wolf. 2003. Nondeterministic quantum query and communication complexities. SIAM J. Comput. 32, 681--699.
[70]
L. A. Wolsey. 2011. Using extended formulations in practice. Optima 85, 7--9.
[71]
M. Yannakakis. 1988. Expressing combinatorial optimization problems by linear programs (extended abstract). In Proceedings of STOC 1988. 223--228.
[72]
M. Yannakakis. 1991. Expressing combinatorial optimization problems by linear programs. J. Comput. System Sci.43, 3, 441--466.
[73]
G. M. Ziegler. 1995. Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer-Verlag.

Cited By

View all

Index Terms

  1. Exponential Lower Bounds for Polytopes in Combinatorial Optimization

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Journal of the ACM
      Journal of the ACM  Volume 62, Issue 2
      May 2015
      304 pages
      ISSN:0004-5411
      EISSN:1557-735X
      DOI:10.1145/2772377
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 06 May 2015
      Accepted: 01 January 2015
      Revised: 01 November 2013
      Received: 01 July 2012
      Published in JACM Volume 62, Issue 2

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Combinatorial optimization
      2. communication complexity
      3. linear programming
      4. quantum communication complexity
      5. semidefinite programming

      Qualifiers

      • Interview
      • Research
      • Refereed

      Funding Sources

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)49
      • Downloads (Last 6 weeks)5
      Reflects downloads up to 18 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Circuits in extended formulationsDiscrete Optimization10.1016/j.disopt.2024.10082552(100825)Online publication date: May-2024
      • (2024)The role of rationality in integer-programming relaxationsMathematical Programming: Series A and B10.1007/s10107-023-01994-w205:1-2(745-771)Online publication date: 1-May-2024
      • (2024)The Extension Complexity of Polytopes with Bounded Integral Slack MatricesInteger Programming and Combinatorial Optimization10.1007/978-3-031-59835-7_9(113-123)Online publication date: 3-Jul-2024
      • (2024)Lower Bounds on the Complexity of Mixed-Integer Programs for Stable Set and KnapsackInteger Programming and Combinatorial Optimization10.1007/978-3-031-59835-7_28(379-392)Online publication date: 3-Jul-2024
      • (2023)Synergies Between Operations Research and Quantum Information ScienceINFORMS Journal on Computing10.1287/ijoc.2023.126835:2(266-273)Online publication date: 9-Feb-2023
      • (2023)Multiplicative updates for symmetric-cone factorizationsMathematical Programming10.1007/s10107-023-02015-6207:1-2(427-456)Online publication date: 30-Sep-2023
      • (2023)Lifts for Voronoi Cells of LatticesDiscrete & Computational Geometry10.1007/s00454-023-00522-z70:3(845-865)Online publication date: 17-Jul-2023
      • (2023)Matrix Factorization Ranks Via Polynomial OptimizationPolynomial Optimization, Moments, and Applications10.1007/978-3-031-38659-6_5(153-180)Online publication date: 28-Dec-2023
      • (2023)A Polyhedral Perspective on Tropical ConvolutionsCombinatorial Algorithms10.1007/978-3-031-34347-6_10(111-122)Online publication date: 3-Jun-2023
      • (2022)Convexification of Permutation-Invariant Sets and an Application to Sparse Principal Component AnalysisMathematics of Operations Research10.1287/moor.2021.121947:4(2547-2584)Online publication date: 1-Nov-2022
      • Show More Cited By

      View Options

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media