[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

The low hanging fruit is gone: achievements and challenges of computational movement analysis

Published: 20 May 2015 Publication History

Abstract

This position paper reviews the achievements and open challenges of movement analysis within Geographical Information Science. The paper argues that the simple problems of movement analysis have mostly been addressed to a sufficient level ("the low hanging fruit"), leaving the research community with the much more challenging problems for the years ahead ("the high hanging fruit"). Whereas the community has made good progress in structuring trajectory data (segmentation, similarity, clustering) and conceptualizing and detecting movement patterns, the much harder task of semantic annotation of structures and patterns remains difficult. The position paper summarizes both achievements and challenges with two sets assertions and calls for the establishment of a unifying theory of Computational Movement Analysis.

References

[1]
G. Andrienko, N. Andrienko, P. Bak, D. Keim, and S. Wrobel. Visual Analytics of Movement. Springer, Berlin Heidelberg, 2013.
[2]
S. Bleisch, M. Duckham, A. Galton, P. Laube, and J. Lyon. Mining candidate causal relationships in movement patterns. International Journal of Geographical Information Science, 28(2):363--382, Nov. 2013.
[3]
A. Both, M. Duckham, P. Laube, T. Wark, and J. Yeoman. Decentralized Monitoring of Moving Objects in a Transportation Network Augmented with Checkpoints. The Computer Journal, 56(12):1432--1449, Sept. 2012.
[4]
K. Buchin, T. J. M. Arseneau, S. Sijben, and E. P. Willems. Detecting movement patterns using Brownian bridges. In Proceedings of the 20th International Conference on Advances in Geographic Information Systems - SIGSPATIAL '12, page 119, New York, New York, USA, Nov. 2012. ACM Press.
[5]
K. Buchin, M. Buchin, and J. Gudmundsson. Detecting single file movement. In Proceedings of the 16th ACM SIGSPATIAL international conference on Advances in geographic information systems - GIS '08, page 1, New York, New York, USA, Nov. 2008. ACM Press.
[6]
U. Demšar, K. Buchin, E. E. van Loon, and J. Shamoun-Baranes. Stacked space-time densities: a geovisualisation approach to explore dynamics of space use over time. GeoInformatica, 19(1):85--115, Apr. 2014.
[7]
S. Dodge, G. Bohrer, R. Weinzierl, S. C. Davidson, R. Kays, D. Douglas, S. Cruz, J. Han, D. Brandes, and M. Wikelski. The environmental-data automated track annotation (Env-DATA) system: linking animal tracks with environmental data. Movement Ecology, 1(1):3, July 2013.
[8]
A. Galton. Dynamic Collectives and Their Collective Dynamics. In A. Cohn and D. Mark, editors, Spatial Information Theory SE - 19, volume 3693 of Lecture Notes in Computer Science, pages 300--315. Springer Berlin Heidelberg, 2005.
[9]
R. H. Güting and M. Schneider. Moving Objects Databases. Morgan Kaufmann, 2005.
[10]
A. Hailey. How far do animals move? Routine movements in a tortoise. Canadian Journal of Zoology, 67(1):208--215, Jan. 1989.
[11]
G. C. Hays, J. D. R. Houghton, and A. E. Myers. Endangered species: Pan-Atlantic leatherback turtle movements. Nature, 429(6991):522, June 2004.
[12]
P. J. Landin. The Mechanical Evaluation of Expressions. The Computer Journal, 6(4):308--320, Jan. 1964.
[13]
P. Laube. Computational Movement Analysis. SpringerBriefs in Computer Science. Springer International Publishing, Berlin Heidelberg, 2014.
[14]
P. Laube, M. Duckham, and M. Palaniswami. Deferred decentralized movement pattern mining for geosensor networks. International Journal of Geographical Information Science, 25(2):273--292, Mar. 2011.
[15]
P. Laube and S. Imfeld. Analyzing Relative Motion within Groups of Trackable Moving Point Objects. In M. Egenhofer and D. Mark, editors, Geographic Information Science SE - 10, volume 2478 of Lecture Notes in Computer Science, pages 132--144. Springer Berlin Heidelberg, 2002.
[16]
P. Laube, S. Imfeld, and R. Weibel. Discovering relative motion patterns in groups of moving point objects. International Journal of Geographical Information Science, 19(6):639--668, July 2005.
[17]
P. Laube, M. van Kreveld, and S. Imfeld. Finding REMO Detecting Relative Motion Patterns in Geospatial Lifelines. In Developments in Spatial Data Handling SE - 16, pages 201--215. Springer Berlin Heidelberg, 2005.
[18]
R. Nathan, O. Spiegel, S. Fortmann-Roe, R. Harel, M. Wikelski, and W. M. Getz. Using tri-axial acceleration data to identify behavioral modes of free-ranging animals: general concepts and tools illustrated for griffon vultures. The Journal of experimental biology, 215(Pt 6):986--96, Mar. 2012.
[19]
R. S. Purves, P. Laube, M. Buchin, and B. Speckmann. Moving beyond the point: An agenda for research in movement analysis with real data. Computers, Environment and Urban Systems, 47:1--4, Sept. 2014.
[20]
G. Schofield, V. J. Hobson, S. Fossette, M. K. S. Lilley, K. A. Katselidis, and G. C. Hays. BIODIVERSITY RESEARCH: Fidelity to foraging sites, consistency of migration routes and habitat modulation of home range by sea turtles. Diversity and Distributions, 16(5):840--853, Sept. 2010.
[21]
J. Shamoun-Baranes, R. Bom, E. E. van Loon, B. J. Ens, K. Oosterbeek, and W. Bouten. From sensor data to animal behaviour: an oystercatcher example. PloS one, 7(5):e37997, Jan. 2012.
[22]
J. Shamoun-Baranes, E. E. van Loon, R. S. Purves, B. Speckmann, D. Weiskopf, and C. J. Camphuysen. Analysis and visualization of animal movement. Biology letters, 8(1):6--9, Feb. 2012.
[23]
A. Soleymani, J. Cachat, and K. Robinson. Integrating cross-scale analysis in the spatial and temporal domains for classification of behavioral movement. Journal of Spatial Information Science, 2015.

Cited By

View all
  • (2021)Towards a Hybrid and Semantically Enriched Trajectory Data Warehouse2021 IEEE/ACS 18th International Conference on Computer Systems and Applications (AICCSA)10.1109/AICCSA53542.2021.9686877(1-8)Online publication date: Nov-2021
  • (2021)Establishing the integrated science of movement: bringing together concepts and methods from animal and human movement analysisInternational Journal of Geographical Information Science10.1080/13658816.2021.1880589(1-36)Online publication date: 19-Feb-2021
  • (2020)A Survey on Big Data for Trajectory AnalyticsISPRS International Journal of Geo-Information10.3390/ijgi90200889:2(88)Online publication date: 1-Feb-2020
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image SIGSPATIAL Special
SIGSPATIAL Special  Volume 7, Issue 1
March 2015
72 pages
EISSN:1946-7729
DOI:10.1145/2782759
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 20 May 2015
Published in SIGSPATIAL Volume 7, Issue 1

Check for updates

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)12
  • Downloads (Last 6 weeks)0
Reflects downloads up to 04 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2021)Towards a Hybrid and Semantically Enriched Trajectory Data Warehouse2021 IEEE/ACS 18th International Conference on Computer Systems and Applications (AICCSA)10.1109/AICCSA53542.2021.9686877(1-8)Online publication date: Nov-2021
  • (2021)Establishing the integrated science of movement: bringing together concepts and methods from animal and human movement analysisInternational Journal of Geographical Information Science10.1080/13658816.2021.1880589(1-36)Online publication date: 19-Feb-2021
  • (2020)A Survey on Big Data for Trajectory AnalyticsISPRS International Journal of Geo-Information10.3390/ijgi90200889:2(88)Online publication date: 1-Feb-2020
  • (2020)Towards logical association rule mining on ontology-based semantic trajectories2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA)10.1109/ICMLA51294.2020.00098(586-591)Online publication date: Dec-2020
  • (2019)Computer-gestützte BewegungsanalyseGeoinformatik10.1007/978-3-662-47096-1_68(157-184)Online publication date: 23-Nov-2019
  • (2018)Modeling the effect of days and road type on peak period travels using structural equation modeling and big data from radio frequency identification for private cars and taxisEuropean Transport Research Review10.1186/s12544-018-0313-910:2Online publication date: 3-Sep-2018
  • (2018)Moving ahead with computational movement analysisInternational Journal of Geographical Information Science10.1080/13658816.2018.144297432:7(1275-1281)Online publication date: 18-May-2018
  • (2017)Discovering Gatherings Based on Individual Mobility Patterns: Challenges and Direction2017 IEEE International Conference on Data Mining Workshops (ICDMW)10.1109/ICDMW.2017.41(266-273)Online publication date: Nov-2017
  • (2017)Big data challenges in transportation: A case study of traffic volume count from massive Radio Frequency Identification(RFID) data2017 International Conference on the Frontiers and Advances in Data Science (FADS)10.1109/FADS.2017.8253194(58-63)Online publication date: Oct-2017
  • (2016)Computer-gestützte BewegungsanalyseHandbuch der Geodäsie10.1007/978-3-662-46900-2_68-1(1-28)Online publication date: 25-May-2016
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media