[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
tutorial

Assessing the Structural Complexity of Computer and Communication Networks

Published: 26 May 2015 Publication History

Abstract

In this tutorial, 17 structural complexity indices are presented and compared, each representing one of the following categories: adjacency- and distance-based metrics, Shannon entropy-based metrics, product measures, subgraph-based metrics, and path- and walk-based metrics. The applicability of these indices to computer and communication networks is evaluated with the aid of different elementary, specifically designed, random, and real network topologies. On the grounds of the evaluation study, advantages and disadvantages of particular metrics are identified. In addition, their general properties and runtimes are assessed, and a general view on the structural network complexity is presented.

References

[1]
R. Albert and A.-L. Barabási. 2002. Statistical mechanics of complex networks. Reviews of Modern Physics 74, 1, 47--97.
[2]
D. Babić, D. J. Klein, I. Lukovits, S. Nikolić, and N. Trinajstić. 2002. Resistance-distance matrix: A computational algorithm and its application. International Journal of Quantum Chemistry 90, 1, 166--176.
[3]
A.-L. Barabási and R. Albert. 1999. Emergence of scaling in random networks. Science 286, 5439, 509--512.
[4]
A. Bavelas. 1950. Communication patterns in task-oriented groups. Journal of the Acoustical Society of America 22, 6, 725--730.
[5]
S. H. Bertz. 1981. The first general index of molecular complexity. Journal of the American Chemical Society 103, 12, 3599--3601.
[6]
B. Bollobás. 1998. Modern Graph Theory. Graduate Texts in Mathematics, Vol. 184. Springer, New York, NY.
[7]
D. Bonchev and G. A. Buck. 2005. Quantitative measures of network complexity. In Complexity in Chemistry, Biology, and Ecology, D. Bonchev and D. H. Rouvray (Eds.). Springer, New York, NY, 191--235.
[8]
J. R. Bunch and J. E. Hopcroft. 1974. Triangular factorization and inversion by fast matrix multiplication. Mathematics of Computation 28, 125, 231--236.
[9]
G. Caldarelli. 2013. Scale-Free Networks: Complex Webs in Nature and Technology. Oxford University Press, Oxford, UK.
[10]
J. C. Claussen. 2008. Offdiagonal complexity: A computationally quick network complexity measure--application to protein networks and cell division. In A. Deutsch, R. B. Parra, R. J. de Boer, O. Diekmann, P. Jagers, E. Kisdi, M. Kretzschmar, P. Lansky, and H. Metz (Eds.), Mathematical Modeling of Biological Systems, Volume II, Birkhäuser, Boston, MA, 279--287.
[11]
D. M. Cvetković, M. Doob, and H. Sachs. 1998. Spectra of Graphs: Theory and Applications (3rd revised and enlarged ed.). Wiley-VCH, Weinheim, Germany.
[12]
M. Dehmer and F. Emmert-Streib. 2013. Advances in Network Complexity. Wiley-VCH Verlag GmbH & Co. KGaA.
[13]
Encyclopædia Britannica. 2014. Chemical compound. (2014). Retrieved April 21, 2015 from http://www.britannica.com/EBchecked/topic/108614/chemical-compound/278310/Functional-groups.
[14]
P. Erdős and A. Rényi. 1959. On random graphs I. Publlicationes Mathematicae Debrecen 6, 290--297.
[15]
G. H. Golub and C. F. Van Loan. 1996. Matrix Computations (3rd ed.). Johns Hopkins University Press, Baltimore, MD.
[16]
J. L. Gross and J. Yellen. 2003. Discrete mathematics and its applications. In Handbook of Graph Theory (1st ed.). CRC Press, Boca Raton, FL.
[17]
I. Gutman, C. Rücker, and G. Rücker. 2001. On walks in molecular graphs. Journal of Chemical Information and Computer Sciences 41, 3, 739--745.
[18]
A. Kamisiński, P. Chołda, and A. Jajszczyk. 2015. Online Appendix. (Jan. 2015). Retrieved April 12, 2015 from http://kt.agh.edu.pl/∼kamisinski/pub/2015_csur_complexity/.
[19]
V. Karyotis, E. Stai, and S. Papavassiliou. 2013. Evolutionary Dynamics of Complex Communications Networks. CRC Press, Boca Raton, FL.
[20]
J. Kim and T. Wilhelm. 2008. What is a complex graph? Physica A: Statistical Mechanics and its Applications 387, 11, 2637--2652.
[21]
V. Latora and M. Marchiori. 2003. Economic small-world behavior in weighted networks. The European Physical Journal B—Condensed Matter and Complex Systems 32, 2, 249--263.
[22]
F. Le Gall. 2014. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation (ISSAC’14). ACM, New York, NY, 296--303.
[23]
I. Lukovits, A. Miličević, S. Nikolić, and N. Trinajstić. 2002. On walk counts and complexity of general graphs. Internet Electronic Journal of Molecular Design 1, 8. 388--400. http://www.biochempress.com/av01_0388.html.
[24]
E. A. Moore, B. T. Sutcliffe, A. H. Pakiari, T. E. Simos, S. Wilson, M. Springborg, D. Pugh, R. A. Lewis, N. Trinajstić, and K. Travis. 2004. Chemical Modelling. SPR—Chemical Modelling, Vol. 3. The Royal Society of Chemistry.
[25]
H. L. Morgan. 1965. The generation of a unique machine description for chemical structures—a technique developed at chemical abstracts service. Journal of Chemical Documentation 5, 2, 107--113.
[26]
A. Mowshowitz. 1968. Entropy and the complexity of graphs: I. An index of the relative complexity of a graph. Bulletin of Mathematical Biophysics 30, 1, 175--204.
[27]
A. Mowshowitz and M. Dehmer. 2010. A symmetry index for graphs. Symmetry: Culture and Science 21, 4, 321--327.
[28]
S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski. 2010. SNDlib 1.0—survivable network design library. Networks 55, 3, 276--286.
[29]
C. Raychaudhury, S. K. Ray, J. J. Ghosh, A. B. Roy, and S. C. Basak. 1984. Discrimination of isomeric structures using information theoretic topological indices. Journal of Computational Chemistry 5, 6, 581--588.
[30]
M. Razinger. 1982. Extended connectivity in chemical graphs. Theoretica chimica acta 61, 6, 581--586.
[31]
G. Rücker and C. Rücker. 1993. Counts of all walks as atomic and molecular descriptors. Journal of Chemical Information and Computer Sciences 33, 5, 683--695.
[32]
R. Seidel. 1995. On the all-pairs-shortest-path problem in unweighted undirected graphs. Journal of Computer and System Sciences 51, 3, 400--403.
[33]
D. J. Watts and S. H. Strogatz. 1998. Collective dynamics of “small-world” networks. Nature 393, 6684, 440--442.
[34]
D. B. West. 2000. Introduction to Graph Theory (2nd ed.). Prentice Hall, Upper Saddle River, NJ.
[35]
T. Wilhelm. 2003. An elementary dynamic model for non-binary food webs. Ecological Modelling 168, 1--2, 145--152.
[36]
T. Wilhelm and J. Hollunder. 2007. Information theoretic description of networks. Physica A: Statistical Mechanics and Its Applications 385, 1, 385--396.

Cited By

View all
  • (2021)Graph Metrics for Network Robustness—A SurveyMathematics10.3390/math90808959:8(895)Online publication date: 17-Apr-2021
  • (2019)Reconfiguration of the Multi-channel Communication System with Hierarchical Structure and Distributed Passive SwitchingComputational Science – ICCS 201910.1007/978-3-030-22741-8_36(502-516)Online publication date: 12-Jun-2019

Index Terms

  1. Assessing the Structural Complexity of Computer and Communication Networks

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Computing Surveys
    ACM Computing Surveys  Volume 47, Issue 4
    July 2015
    573 pages
    ISSN:0360-0300
    EISSN:1557-7341
    DOI:10.1145/2775083
    • Editor:
    • Sartaj Sahni
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 26 May 2015
    Accepted: 01 April 2015
    Revised: 01 January 2015
    Received: 01 April 2014
    Published in CSUR Volume 47, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Internet
    2. graph theory
    3. structural complexity

    Qualifiers

    • Tutorial
    • Research
    • Refereed

    Funding Sources

    • Polish Ministry of Science and Higher Education from the budget for science in the years 2013--2015, Project No. IP2012 022972

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)12
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 19 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2021)Graph Metrics for Network Robustness—A SurveyMathematics10.3390/math90808959:8(895)Online publication date: 17-Apr-2021
    • (2019)Reconfiguration of the Multi-channel Communication System with Hierarchical Structure and Distributed Passive SwitchingComputational Science – ICCS 201910.1007/978-3-030-22741-8_36(502-516)Online publication date: 12-Jun-2019

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media