[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2637748.2638422acmotherconferencesArticle/Chapter ViewAbstractPublication Pagesi-knowConference Proceedingsconference-collections
research-article

Analysis of word co-occurrence in human literature for supporting semantic correspondence discovery

Published: 16 September 2014 Publication History

Abstract

Semantic similarity measurement aims to determine the likeness between two text expressions that use different lexicographies for representing the same real object or idea. In this work, we describe the way to exploit broad cultural trends for identifying semantic similarity. This is possible through the quantitative analysis of a vast digital book collection representing the digested history of humanity. Our research work has revealed that appropriately analyzing the co-occurrence of words in some periods of human literature can help us to determine the semantic similarity between these words by means of computers with a high degree of accuracy.

References

[1]
P. Ahlgren, B. Jarneving, R. Rousseau. Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient. JASIST (JASIS) 54(6):550--560 (2003).
[2]
R. Barzilay, K. McKeown. Sentence Fusion for Multidocument News Summarization. Computational Linguistics 31(3). 297--328 (2005).
[3]
M. Batet, D. Sanchez, A. Valls. An ontology-based measure to compute semantic similarity in biomedicine. J. Biomed. Inform. (44): 118--125 (2010).
[4]
M. Batet. Ontology-based semantic clustering. AI Commun. 24(3): 291--292 (2011).
[5]
T. W. Bickmore, T. Giorgino. Health dialog systems for patients and consumers. Journal of Biomedical Informatics: 556--571 (2006).
[6]
D. Bollegala, Y. Matsuo, M. Ishizuka. A Web Search Engine-Based Approach to Measure Semantic Similarity between Words. IEEE Trans. Knowl. Data Eng. (TKDE) 23(7):977--990 (2011).
[7]
D. Bollegala, Y. Matsuo, M. Ishizuka. Measuring semantic similarity between words using web search engines. WWW 2007: 757--766.
[8]
J. M. Chaves-Gonzalez, J. Martinez-Gil. Evolutionary algorithm based on different semantic similarity functions for synonym recognition in the biomedical domain. Knowl.-Based Syst. 37: 62--69 (2013).
[9]
B. Chen, G. F. Foster, R. Kuhn. Bilingual Sense Similarity for Statistical Machine Translation. ACL 2010:834--843.
[10]
H. H. Chen, M. S. Lin, Y. C. Wei. Novel Association Measures Using Web Search with Double Checking. ACL 2006.
[11]
F. M. Couto, M. J. Silva, P. Coutinho. Semantic similarity over the gene ontology: family correlation and selecting disjunctive ancestors. CIKM 2005:343--344.
[12]
Do H. H., Rahm, E. COMA - A System for Flexible Combination of Schema Matching Approaches. VLDB 2002: 610--621.
[13]
G. Erozel, N. K. Cicekli, I. Cicekli. Natural language querying for video databases. Inf. Sci. 178(12): 2534--2552 (2008).
[14]
J. J. Jiang, D. W. Conrath. Semantic similarity based on corpus statistics and lexical taxonomy. ROCLING 1997: 19--33.
[15]
L. Lamontagne, G. Lapalme. Textual Reuse for Email Response. ECCBR 2004: 242--256.
[16]
C. Leacock, M. Chodorow. Combining Local Context and WordNet Similarity for Word Sense Identification, WordNet: An Electronic Lexical Database. 1998. MIT Press.
[17]
J. Martinez-Gil, J. F. Aldana-Montes. Reverse ontology matching. SIGMOD Record 39(4): 5--11 (2010).
[18]
J. Martinez-Gil, I. Navas-Delgado, J. F. Aldana-Montes. MaF: An Ontology Matching Framework. J. UCS 18(2): 194--217 (2012).
[19]
J. Martinez-Gil, J. F. Aldana-Montes. An overview of current ontology meta-matching solutions. Knowledge Eng. Review 27(4): 393--412 (2012).
[20]
J. B. Michel, Y. Shen, A. Aiden, A. Veres, M. Gray, J. Pickett, D. Hoiberg, D. Clancy, P. Norvig, J. Orwant, S. Pinker, M. Nowak, E. Aiden. Quantitative analysis of culture using millions of digitized books, Science 331(6014): 176--182 (2011).
[21]
G. A. Miller, W. G. Charles. Contextual correlates of semantic similarity. Language and Cognitive Processes, 6(1): 1--8 (1991).
[22]
A. Moschitti, S. Quarteroni. Kernels on Linguistic Structures for Answer Extraction. ACL (Short Papers) 2008: 113--116.
[23]
J. O'Shea, Z. Bandar, K. A. Crockett, D. McLean. Benchmarking short text semantic similarity. IJIIDS 4(2): 103--120 (2010).
[24]
T. Pedersen, S. Patwardhan, J. Michelizzi. WordNet::Similarity - Measuring the Relatedness of Concepts. AAAI 2004: 1024--1025.
[25]
E. G. M. Petrakis, G. Varelas, A. Hliaoutakis, P. Raftopoulou. X-similarity: computing semantic similarity between concepts from different ontologies. J. Digit. Inf. Manage. 233--237 (2003).
[26]
G. Pirro. A semantic similarity metric combining features and intrinsic information content. Data Knowl. Eng. 68(11): 1289--1308 (2009).
[27]
P. Resnik. Semantic Similarity in a Taxonomy: An Information-Based Measure and its Application to Problems of Ambiguity in Natural Language. J. Artif. Intell. Res. (JAIR) 11: 95--130 (1999).
[28]
M. Sahami, T. D. Heilman. A web-based kernel function for measuring the similarity of short text snippets. WWW 2006: 377--386.
[29]
D. Sanchez, M. Batet, D. Isern. Ontology-based information content computation. Knowl.-Based Syst. 24(2): 297--303 (2011).
[30]
J. Volz, C. Bizer, M. Gaedke, G. Kobilarov. Silk - A Link Discovery Framework for the Web of Data. LDOW 2009.

Cited By

View all
  • (2022)State-of-the Art: Short Text Semantic Similarity (STSS) Techniques in Question Answering Systems (QAS)International Conference on Artificial Intelligence for Smart Community10.1007/978-981-16-2183-3_98(1033-1044)Online publication date: 14-Nov-2022

Index Terms

  1. Analysis of word co-occurrence in human literature for supporting semantic correspondence discovery

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Other conferences
      i-KNOW '14: Proceedings of the 14th International Conference on Knowledge Technologies and Data-driven Business
      September 2014
      262 pages
      ISBN:9781450327695
      DOI:10.1145/2637748
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 16 September 2014

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. data integration
      2. semantic similarity
      3. text analysis

      Qualifiers

      • Research-article

      Funding Sources

      Conference

      i-KNOW '14

      Acceptance Rates

      i-KNOW '14 Paper Acceptance Rate 25 of 73 submissions, 34%;
      Overall Acceptance Rate 77 of 238 submissions, 32%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)2
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 21 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2022)State-of-the Art: Short Text Semantic Similarity (STSS) Techniques in Question Answering Systems (QAS)International Conference on Artificial Intelligence for Smart Community10.1007/978-981-16-2183-3_98(1033-1044)Online publication date: 14-Nov-2022

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media