[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2676724.2693176acmconferencesArticle/Chapter ViewAbstractPublication PagespoplConference Proceedingsconference-collections
research-article
Open access

Certified Connection Tableaux Proofs for HOL Light and TPTP

Published: 13 January 2015 Publication History

Abstract

In recent years, the Metis prover based on ordered paramodulation and model elimination has replaced the earlier built-in methods for general-purpose proof automation in HOL4 and Isabelle/HOL. In the annual CASC competition, the leanCoP system based on connection tableaux has however performed better than Metis. In this paper we show how the leanCoP's core algorithm can be implemented inside HOL Light. leanCoP's flagship feature, namely its minimalistic core, results in a very simple proof system. This plays a crucial role in extending the MESON proof reconstruction mechanism to connection tableaux proofs, providing an implementation of leanCoP that certifies its proofs. We discuss the differences between our direct implementation using an explicit Prolog stack,to the continuation passing implementation of MESON present in HOL Light and compare their performance on all core HOL Light goals. The resulting prover can be also used as a general purpose TPTP prover. We compare its performance against the resolution based Metis on TPTP and other interesting datasets.

References

[1]
J. Alama, T. Heskes, D. Kühlwein, E. Tsivtsivadze, and J. Urban. Premise selection for mathematics by corpus analysis and kernel methods. J. Autom. Reasoning, 52 (2): 191--213, 2014. ISSN 0168-7433. 10.1007/s10817-013-9286-5.
[2]
B. Beckert and J. Posegga. leanTAP: Lean tableau-based deduction. J. Autom. Reasoning, 15 (3): 339--358, 1995. 10.1007/BF00881804. URL http://dx.doi.org/10.1007/BF00881804.
[3]
S. Böhme and T. Nipkow. Sledgehammer: Judgement Day. In J. Giesl and R. Hähnle, editors, IJCAR, volume 6173 of LNCS, pages 107--121. Springer, 2010. ISBN 978-3-642-14202-4.
[4]
T. Gauthier and C. Kaliszyk. Premise selection and external provers for HOL4. In Certified Programs and Proofs (CPP'15), Lecture Notes in Computer Science. Springer, 2015. 10.1145/2676724.2693173. URL http://dx.doi.org/10.1145/2676724.2693173. http://dx.doi.org/10.1145/2676724.2693173.
[5]
J. Harrison. Optimizing Proof Search in Model Elimination. In M. McRobbie and J. Slaney, editors, Proceedings of the 13th International Conference on Automated Deduction, number 1104 in LNAI, pages 313--327. Springer, 1996.
[6]
J. Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge University Press, 2009. ISBN 978-0-521-89957-4.
[7]
K. Hoder and A. Voronkov. Sine qua non for large theory reasoning. In N. Bjørner and V. Sofronie-Stokkermans, editors, CADE, volume 6803 of LNCS, pages 299--314. Springer, 2011. ISBN 978-3-642-22437-9.
[8]
J. Hurd. First-order proof tactics in higher-order logic theorem provers. In M. Archer, B. D. Vito, and C. Muñoz, editors, Design and Application of Strategies/Tactics in Higher Order Logics (STRATA 2003), number NASA/CP-2003-212448 in NASA Technical Reports, pages 56--68, Sept. 2003. URL http://techreports.larc.nasa.gov/ltrs/PDF/2003/cp/NASA-2003-cp212448.pdf.
[9]
C. Kaliszyk and J. Urban. Stronger automation for Flyspeck by feature weighting and strategy evolution. In J. C. Blanchette and J. Urban, editors, PxTP 2013, volume 14 of EPiC Series, pages 87--95. EasyChair, 2013.
[10]
C. Kaliszyk and J. Urban. MizAR 40 for Mizar 40. CoRR, abs/1310.2805, 2013.
[11]
C. Kaliszyk and J. Urban. PRocH: Proof reconstruction for HOL Light. In M. P. Bonacina, editor, CADE, volume 7898 of phLNCS, pages 267--274. Springer, 2013. ISBN 978-3-642-38573-5.
[12]
C. Kaliszyk and J. Urban. Learning-assisted theorem proving with millions of lemmas. J. Symbolic Computation, 2014. 10.1016/j.jsc.2014.09.032. http://dx.doi.org/10.1016/j.jsc.2014.09.032.
[13]
C. Kaliszyk and J. Urban. HOL(y)Hammer: Online ATP service for HOL Light. Mathematics in Computer Science, 2014. 10.1007/s11786-014-0182-0. http://dx.doi.org/10.1007/s11786-014-0182-0.
[14]
C. Kaliszyk and J. Urban. Learning-assisted automated reasoning with Flyspeck. J. Autom. Reasoning, 53 (2): 173--213, 2014. 10.1007/s10817-014-9303-3. URL http://dx.doi.org/10.1007/s10817-014-9303-3.
[15]
C. Kaliszyk, L. Mamane, and J. Urban. Machine learning of Coq proof guidance: First experiments. In T. Kutsia and A. Voronkov, editors, SCSS 2014, volume 30 of EPiC Series, pages 27--34. EasyChair, 2014.
[16]
L. Kovács and A. Voronkov. First-order theorem proving and Vampire. In N. Sharygina and H. Veith, editors, CAV, volume 8044 of LNCS, pages 1--35. Springer, 2013. ISBN 978-3-642-39798-1.
[17]
KuhlweinLTUH12D. Kühlwein, T. van Laarhoven, E. Tsivtsivadze, J. Urban, and T. Heskes. Overview and evaluation of premise selection techniques for large theory mathematics. In B. Gramlich, D. Miller, and U. Sattler, editors, IJCAR, volume 7364 of LNCS, pages 378--392. Springer, 2012. ISBN 978-3-642-31364-6.
[18]
D. Kühlwein, J. C. Blanchette, C. Kaliszyk, and J. Urban. MaSh: Machine learning for Sledgehammer. In S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors, ITP 2013, volume 7998 of LNCS, pages 35--50. Springer, 2013. 10.1007/978-3-642-39634-2_6. URL http://cl-informatik.uibk.ac.at/users/cek/docs/kuehlwein-itp13.pdf.
[19]
R. Letz and G. Stenz. Model elimination and connection tableau procedures. IncitetDBLP:books/el/RobinsonV01, pages 2015--2114. ISBN 0-444-50813-9.
[20]
D. W. Loveland. Mechanical theorem proving by model elimination. J. the ACM, 15 (2): 236--251, Apr. 1968.
[21]
W. McCune. Prover9 and Mace4. http://www.cs.unm.edu/ mccune/prover9/, 2005--2010.
[22]
W. McCune and L. Wos. Otter: The CADE-13 Competition Incarnations. J. Autom. Reasoning, 18 (2): 211--220, 1997.
[23]
A. Nonnengart and C. Weidenbach. Computing small clause normal forms. IncitetDBLP:books/el/RobinsonV01, pages 335--367. ISBN 0-444-50813-9.
[24]
J. Otten. Clausal connection-based theorem proving in intuitionistic first-order logic. In B. Beckert, editor, Automated Reasoning with Analytic Tableaux and Related Methods, International Conference, TABLEAUX 2005, Koblenz, Germany, September 14--17, 2005, Proceedings, volume 3702 of Lecture Notes in Computer Science, pages 245--261. Springer, 2005. ISBN 3-540-28931-3. 10.1007/11554554_19. URL http://dx.doi.org/10.1007/11554554_19.
[25]
J. Otten. Restricting backtracking in connection calculi. AI Commun., 23 (2-3): 159--182, 2010. 10.3233/AIC-2010-0464. URL http://dx.doi.org/10.3233/AIC-2010-0464.
[26]
J. Otten and W. Bibel. leanCoP: lean connection-based theorem proving. J. Symb. Comput., 36 (1-2): 139--161, 2003.
[27]
L. C. Paulson. Automated reasoning and its applications. chapter Generic Automatic Proof Tools, pages 23--47. MIT Press, Cambridge, MA, USA, 1997. ISBN 0-262-22055-5.
[28]
L. C. Paulson. A generic tableau prover and its integration with Isabelle. J. UCS, 5 (3): 73--87, 1999.
[29]
L. C. Paulson and J. Blanchette. Three years of experience with Sledgehammer, a practical link between automated and interactive theorem provers. In 8th IWIL, 2010. Invited talk.
[30]
L. C. Paulson and K. W. Susanto. Source-level proof reconstruction for interactive theorem proving. In K. Schneider and J. Brandt, editors, TPHOLs, volume 4732 of LNCS, pages 232--245. Springer, 2007. ISBN 978-3-540-74590-7.
[31]
J. A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning (in 2 volumes). Elsevier and MIT Press, 2001. ISBN 0-444-50813-9.
[32]
S. Schulz. System description: E 1.8. In K. L. McMillan, A. Middeldorp, and A. Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning - 19th International Conference, LPAR-19, Stellenbosch, South Africa, December 14--19, 2013. Proceedings, volume 8312 of Lecture Notes in Computer Science, pages 735--743. Springer, 2013. ISBN 978-3-642-45220-8. 10.1007/978-3-642-45221-5_49. URL http://dx.doi.org/10.1007/978-3-642-45221-5_49.
[33]
M. E. Stickel. A Prolog Technology Theorem Prover: Implementation by an extended Prolog compiler. J. Autom. Reasoning, 4 (4): 353--380, 1988. 10.1007/BF00297245. URL http://dx.doi.org/10.1007/BF00297245.
[34]
T. Ströder, F. Emmes, P. Schneider-Kamp, J. Giesl, and C. Fuhs. A linear operational semantics for termination and complexity analysis of ISO Prolog. In G. Vidal, editor, LOPSTR, volume 7225 of LNCS, pages 237--252, 2012. 10.1007/978-3-642-32211-2_16.
[35]
G. Sutcliffe. The CADE-21 automated theorem proving system competition. AI Commun., 21 (1): 71--81, 2008. URL http://iospress.metapress.com/content/q3717606w4338313/.
[36]
J. Urban. MPTP 0.2: Design, implementation, and initial experiments. J. Autom. Reasoning, 37 (1-2): 21--43, 2006.
[37]
J. Urban and J. Vyskočil. Theorem proving in large formal mathematics as an emerging AI field. In M. P. Bonacina and M. E. Stickel, editors, Automated Reasoning and Mathematics: Essays in Memory of William McCune, volume 7788 of LNAI, pages 240--257. Springer, 2013. 10.1007/978-3-642-36675-8_13.
[38]
J. Urban, K. Hoder, and A. Voronkov. Evaluation of automated theorem proving on the Mizar Mathematical Library. In ICMS, pages 155--166, 2010.
[39]
J. Urban, J. Vyskočil, and P. Štěpánek. MaLeCoP: Machine learning connection prover. In K. Brünnler and G. Metcalfe, editors, TABLEAUX, volume 6793 of LNCS, pages 263--277. Springer, 2011. ISBN 978-3-642-22118-7.
[40]
J. Urban, P. Rudnicki, and G. Sutcliffe. ATP and presentation service for Mizar formalizations. J. Autom. Reasoning, 50: 229--241, 2013. 10.1007/s10817-012-9269-y.
[41]
C. Weidenbach, B. Afshordel, U. Brahm, C. Cohrs, T. Engel, E. Keen, C. Theobalt, and D. Topić. System description: SPASS version 1.0.0. In Automated Deduction - CADE-16, volume 1632 of LNCS, pages 378--382. Springer Berlin Heidelberg, 1999. ISBN 978-3-540-66222-8. 10.1007/3-540-48660-7_34. URL http://dx.doi.org/10.1007/3-540-48660-7_34.

Cited By

View all
  • (2023)Learning to Guide a Saturation-Based Theorem ProverIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2022.314038245:1(738-751)Online publication date: 1-Jan-2023
  • (2023)gym-saturation: Gymnasium Environments for Saturation Provers (System description)Automated Reasoning with Analytic Tableaux and Related Methods10.1007/978-3-031-43513-3_11(187-199)Online publication date: 14-Sep-2023
  • (2022)Safe, fast, concurrent proof checking for the lambda-pi calculus modulo rewritingProceedings of the 11th ACM SIGPLAN International Conference on Certified Programs and Proofs10.1145/3497775.3503683(225-238)Online publication date: 17-Jan-2022
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
CPP '15: Proceedings of the 2015 Conference on Certified Programs and Proofs
January 2015
192 pages
ISBN:9781450332965
DOI:10.1145/2676724
  • Program Chairs:
  • Xavier Leroy,
  • Alwen Tiu
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 January 2015

Check for updates

Author Tags

  1. automated reasoning
  2. certified proofs
  3. connection tableaux
  4. hol light
  5. interactive theorem proving
  6. leancop

Qualifiers

  • Research-article

Funding Sources

Conference

POPL '15
Sponsor:

Acceptance Rates

CPP '15 Paper Acceptance Rate 18 of 26 submissions, 69%;
Overall Acceptance Rate 18 of 26 submissions, 69%

Upcoming Conference

POPL '25

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)80
  • Downloads (Last 6 weeks)4
Reflects downloads up to 19 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Learning to Guide a Saturation-Based Theorem ProverIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2022.314038245:1(738-751)Online publication date: 1-Jan-2023
  • (2023)gym-saturation: Gymnasium Environments for Saturation Provers (System description)Automated Reasoning with Analytic Tableaux and Related Methods10.1007/978-3-031-43513-3_11(187-199)Online publication date: 14-Sep-2023
  • (2022)Safe, fast, concurrent proof checking for the lambda-pi calculus modulo rewritingProceedings of the 11th ACM SIGPLAN International Conference on Certified Programs and Proofs10.1145/3497775.3503683(225-238)Online publication date: 17-Jan-2022
  • (2021)Eliminating Models During Model EliminationAutomated Reasoning with Analytic Tableaux and Related Methods10.1007/978-3-030-86059-2_15(250-265)Online publication date: 30-Aug-2021
  • (2021)Towards Finding Longer ProofsAutomated Reasoning with Analytic Tableaux and Related Methods10.1007/978-3-030-86059-2_10(167-186)Online publication date: 30-Aug-2021
  • (2020)Machine Learning Guidance for Connection TableauxJournal of Automated Reasoning10.1007/s10817-020-09576-7Online publication date: 5-Sep-2020
  • (2019)Certification of Nonclausal Connection Tableaux ProofsAutomated Reasoning with Analytic Tableaux and Related Methods10.1007/978-3-030-29026-9_2(21-38)Online publication date: 14-Aug-2019
  • (2018)Reinforcement learning of theorem provingProceedings of the 32nd International Conference on Neural Information Processing Systems10.5555/3327546.3327559(8836-8847)Online publication date: 3-Dec-2018
  • (2016)Towards the Integration of an Intuitionistic First-Order Prover into CoqElectronic Proceedings in Theoretical Computer Science10.4204/EPTCS.210.6210(30-35)Online publication date: 17-Jun-2016
  • (2015)Importing SMT and Connection proofs as expansion treesElectronic Proceedings in Theoretical Computer Science10.4204/EPTCS.186.3186(3-10)Online publication date: 30-Jul-2015
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media