[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

A framework for transient rendering

Published: 19 November 2014 Publication History

Abstract

Recent advances in ultra-fast imaging have triggered many promising applications in graphics and vision, such as capturing transparent objects, estimating hidden geometry and materials, or visualizing light in motion. There is, however, very little work regarding the effective simulation and analysis of transient light transport, where the speed of light can no longer be considered infinite. We first introduce the transient path integral framework, formally describing light transport in transient state. We then analyze the difficulties arising when considering the light's time-of-flight in the simulation (rendering) of images and videos. We propose a novel density estimation technique that allows reusing sampled paths to reconstruct time-resolved radiance, and devise new sampling strategies that take into account the distribution of radiance along time in participating media. We then efficiently simulate time-resolved phenomena (such as caustic propagation, fluorescence or temporal chromatic dispersion), which can help design future ultra-fast imaging devices using an analysis-by-synthesis approach, as well as to achieve a better understanding of the nature of light transport.

Supplementary Material

ZIP File (a177.zip)
Supplemental material.

References

[1]
Ament, M., Bergmann, C., and Weiskopf, D. 2014. Refractive radiative transfer equation. ACM Trans. Graph. 33, 2.
[2]
Antani, L., Chandak, A., Taylor, M., and Manocha, D. 2012. Direct-to-indirect acoustic radiance transfer. IEEE Transactions on Visualization and Computer Graphics 18, 2.
[3]
Bertram, M., Deines, E., Mohring, J., Jegorovs, J., and Hagen, H. 2005. Phonon tracing for auralization and visualization of sound. In IEEE Visualization '05.
[4]
Cammarano, M., and Jensen, H. W. 2002. Time dependent photon mapping. In Eurographics Workshop on Rendering '02.
[5]
D'Eon, E., and Irving, G. 2011. A quantized-diffusion model for rendering translucent materials. ACM Trans. Graph. 30, 4.
[6]
Durand, F., Holzschuch, N., Soler, C., Chan, E., and Sillion, F. X. 2005. A frequency analysis of light transport. ACM Trans. Graph. 24, 3.
[7]
Dutré, P., Bala, K., and Bekaert, P. 2006. Advanced Global Illumination. AK Peters.
[8]
Funkhouser, T., Tsingos, N., and Jot, J.-M. 2003. Survey of methods for modeling sound propagation in interactive virtual environment systems. Presence and Teleoperation Tongthong.
[9]
Georgiev, I., Křivánek, J., Hachisuka, T., Nowrouzezahrai, D., and Jarosz, W. 2013. Joint importance sampling of low-order volumetric scattering. ACM Trans. Graph. 32, 6.
[10]
Gondek, J. S., Meyer, G. W., and Newman, J. G. 1994. Wavelength dependent reflectance functions. In SIGGRAPH '94.
[11]
Gutierrez, D., Muñoz, A., Anson, O., and Seron, F. 2005. Non-linear volume photon mapping. In Eurographics Symposium on Rendering '05.
[12]
Gutierrez, D., Narasimhan, S. G., Jensen, H. W., and Jarosz, W. 2008. Scattering. In ACM SIGGRAPH ASIA 2008 Courses.
[13]
Gutierrez, D., Seron, F., Muñoz, A., and Anson, O. 2008. Visualizing underwater ocean optics. Computer Graphics Forum 27, 2.
[14]
Hachisuka, T., and Jensen, H. W. 2009. Stochastic progressive photon mapping. ACM Trans. Graph. 28, 5.
[15]
Hachisuka, T., Ogaki, S., and Jensen, H. W. 2008. Progressive photon mapping. ACM Trans. Graph. 27, 5.
[16]
Hachisuka, T., Jarosz, W., and Jensen, H. W. 2010. A progressive error estimation framework for photon density estimation. ACM Trans. Graph. 29, 6.
[17]
Heide, F., Hullin, M., Gregson, J., and Heidrich, W. 2013. Low-budget transient imaging using photonic mixer devices. ACM Trans. Graph. 32, 4.
[18]
Ihrke, I., Ziegler, G., Tevs, A., Theobalt, C., Magnor, M., and Seidel, H.-P. 2007. Eikonal rendering: Efficient light transport in refractive objects. ACM Trans. Graph. 26, 3.
[19]
Jarabo, A., Masia, B., Velten, A., Barsi, C., Raskar, R., and Gutierrez, D. 2013. Rendering relativistic effects in transient imaging. In congreso Español de Informática Gráfica (CEIG'13).
[20]
Jarabo, A. 2012. Femto-photography: Visualizing light in motion. Master's thesis, Universidad de Zaragoza.
[21]
Jarosz, W., Nowrouzezahrai, D., Sadeghi, I., and Jensen, H. W. 2011. A comprehensive theory of volumetric radiance estimation using photon points and beams. ACM Trans. Graph. 30, 1.
[22]
Jarosz, W., Nowrouzezahrai, D., Thomas, R., Sloan, P.-P., and Zwicker, M. 2011. Progressive photon beams. ACM Trans. Graph. 30, 6.
[23]
Jarosz, W., Schönefeld, V., Kobbelt, L., and Jensen, H. W. 2012. Theory, analysis and applications of 2D global illumination. ACM Trans. Graph. 31, 5.
[24]
Jensen, H. W. 2001. Realistic Image Synthesis Using Photon Mapping. AK Peters.
[25]
Kadambi, A., Whyte, R., Bhandari, A., Streeter, L., Barsi, C., Dorrington, A., and Raskar, R. 2013. Coded time of flight cameras: sparse deconvolution to address multipath interference and recover time profiles. ACM Trans. Graph. 32, 6.
[26]
Kalli, H., and Cashwell, E. 1977. Evaluation of three Monte Carlo estimation schemes for flux at a point. Tech. Rep. LA-6865-MS, Los Alamos Scientific Lab, New Mexico, USA.
[27]
Kaplanyan, A. S., and Dachsbacher, C. 2013. Adaptive progressive photon mapping. ACM Trans. Graph. 32, 2.
[28]
Keller, M., and Kolb, A. 2009. Real-time simulation of time-of-flight sensors. Simulation Modelling Practice and Theory 17, 5.
[29]
Kirmani, A., Hutchison, T., Davis, J., and Raskar, R. 2011. Looking around the corner using ultrafast transient imaging. International Journal of Computer Vision 95, 1.
[30]
Knaus, C., and Zwicker, M. 2011. Progressive photon mapping: A probabilistic approach. ACM Trans. Graph. 30, 3.
[31]
Kolb, A., Barth, E., Koch, R., and Larsen, R. 2010. Time-of-flight sensors in computer graphics. Computer Graphics Forum 29, 1.
[32]
Křivánek, J., Georgiev, I., Hachisuka, T., Vévoda, P., Šik, M., Nowrouzezahrai, D., and Jarosz, W. 2014. Unifying points, beams, and paths in volumetric light transport simulation. ACM Trans. Graph. 33, 4.
[33]
Kulla, C., and Fajardo, M. 2012. Importance sampling techniques for path tracing in participating media. Computer Graphics Forum 31, 4.
[34]
Křivánek, J., Georgiev, I., Kaplanyan, A. S., and Cañada, J. 2013. Recent advances in light transport simulation: theory & practice. In ACM SIGGRAPH 2013 Courses.
[35]
Latorre, P., Seron, F., and Gutierrez, D. 2012. Birefringency: Calculation of refracted ray paths in biaxial crystals. The Visual Computer 28, 4.
[36]
Lin, J., Liu, Y., Hullin, M. B., and Dai, Q. 2014. Fourier analysis on transient imaging with a multifrequency time-of-flight camera. In IEEE Conference on Computer Vision and Pattern Recognition '14.
[37]
Mitra, K., and Kumar, S. 1999. Development and comparison of models for light-pulse transport through scattering-absorbing media. Appl Op 38, 1.
[38]
Musbach, A., Meyer, G. W., Reitich, F., and Oh, S. H. 2013. Full wave modelling of light propagation and reflection. Computer Graphics Forum 32, 6.
[39]
Naik, N., Zhao, S., Velten, A., Raskar, R., and Bala, K. 2011. Single view reflectance capture using multiplexed scattering and time-of-flight imaging. ACM Trans. Graph. 30.
[40]
Navarro, F., Seron, F., and Gutierrez, D. 2011. Motion blur rendering: State of the art. Computer Graphics Forum 30, 1.
[41]
Novák, J., Nowrouzezahrai, D., Dachsbacher, C., and Jarosz, W. 2012. Virtual ray lights for rendering scenes with participating media. ACM Trans. Graph. 31, 4.
[42]
O'Toole, M., Heide, F., Xiao, L., Hullin, M. B., Heidrich, W., and Kutulakos, K. N. 2014. Temporal frequency probing for 5d transient analysis of global light transport. ACM Trans. Graph. 33, 4.
[43]
Perlin, K. 2002. Improving noise. ACM Trans. Graph. 21, 3.
[44]
Ramamoorthi, R., Mahajan, D., and Belhumeur, P. 2007. A first-order analysis of lighting, shading, and shadows. ACM Trans. Graph. 26, 1.
[45]
Raskar, R., and Davis, J. 2008. 5d time-light transport matrix: What can we reason about scene properties? Tech. rep., MIT.
[46]
Rief, H., Dubi, A., and Elperin, T. 1984. Track length estimation applied to point detector. Nuclear Science and Engineering 87.
[47]
Sadeghi, I., Muñoz, A., Laven, P., Jarosz, W., Seron, F., Gutierrez, D., and Jensen, H. W. 2012. Physically-based simulation of rainbows. ACM Trans. Graph. 31, 1.
[48]
Scott, D. W. 1992. Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley.
[49]
Siltanen, S., Lokki, T., Kiminki, S., and Savioja, L. 2007. The room acoustic rendering equation. J. Acoust. Soc. Am. 122, 3.
[50]
Silverman, B. W. 1986. Density Estimation for Statistics and Data Analysis. Taylor & Francis.
[51]
Smith, A., Skorupski, J., and Davis, J. 2008. Transient rendering. Tech. Rep. UCSC-SOE-08-26, School of Engineering, University of California, Santa Cruz.
[52]
Veach, E., and Guibas, L. J. 1995. Optimally combining sampling techniques for Monte Carlo rendering. In SIGGRAPH '95.
[53]
Veach, E., and Guibas, L. J. 1997. Metropolis light transport. In SIGGRAPH '97.
[54]
Veach, E. 1997. Robust Monte Carlo methods for light transport simulation. PhD thesis, Stanford.
[55]
Velten, A., Willwacher, T., Gupta, O., Veeraraghavan, A., Bawendi, M. G., and Raskar, R. 2012. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nature Communications, 3.
[56]
Velten, A., Wu, D., Jarabo, A., Masia, B., Barsi, C., Lawson, E., Joshi, C., Gutierrez, D., Bawendi, M. G., and Raskar, R. 2012. Relativistic ultrafast rendering using time-of-flight imaging. In ACM SIGGRAPH 2012 Talks.
[57]
Velten, A., Wu, D., Jarabo, A., Masia, B., Barsi, C., Joshi, C., Lawson, E., Bawendi, M., Gutierrez, D., and Raskar, R. 2013. Femto-photography: Capturing and visualizing the propagation of light. ACM Trans. Graph. 32, 4.
[58]
Weidlich, A., and Wilkie, A. 2008. Realistic rendering of birefringency in uniaxial crystals. ACM Trans. Graph. 27, 1.
[59]
Weiskopf, D., Kraus, U., and Ruder, H. 1999. Searchlight and doppler effects in the visualization of special relativity: a corrected derivation of the transformation of radiance. ACM Trans. Graph. 18, 3.
[60]
Westin, S. H., Arvo, J. R., and Torrance, K. E. 1992. Predicting reflectance functions from complex surfaces. In SIGGRAPH '92.
[61]
Wilkie, A., Tobler, R. F., and Purgathofer, W. 2001. Combined rendering of polarization and fluorescence effects. In Eurographics Workshop on Rendering Techniques '01.
[62]
Wu, D., Wetzstein, G., Barsi, C., Willwacher, T., O'Toole, M., Naik, N., Dai, Q., Kutulakos, K., and Raskar, R. 2012. Frequency analysis of transient light transport with applications in bare sensor imaging. In European Conference on Computer Vision '12.
[63]
Wu, D., Velten, A., O'Toole, M., Masia, B., Agrawal, A., Dai, Q., and Raskar, R. 2013. Decomposing global light transport using time of flight imaging. International Journal of Computer Vision 105, 3.
[64]
Yoo, K. M., and Alfano, R. R. 1990. Time-resolved coherent and incoherent components of forward light scattering in random media. Opt. Lett. 15, 6.
[65]
Zhang, Y., Yi, H., and Tan, H. 2013. One-dimensional transient radiative transfer by lattice Boltzmann method. Optics Express 21, 21.
[66]
Zhu, C., and Liu, Q. 2013. Review of Monte Carlo modeling of light transport in tissues. J. Biomed. Opt. 18, 5.

Cited By

View all
  • (2024)DARTS: Diffusion Approximated Residual Time Sampling for Time-of-flight Rendering in Homogeneous Scattering MediaACM Transactions on Graphics10.1145/368793043:6(1-14)Online publication date: 19-Nov-2024
  • (2024)Self-Annotated 3D Geometric Learning for Smeared Points Removal2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)10.1109/WACV57701.2024.00346(3482-3491)Online publication date: 3-Jan-2024
  • (2024)Recurrent Cross-Modality Fusion for Time-of-Flight Depth DenoisingIEEE Transactions on Computational Imaging10.1109/TCI.2024.349631210(1626-1639)Online publication date: 2024
  • Show More Cited By

Index Terms

  1. A framework for transient rendering

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 33, Issue 6
    November 2014
    704 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2661229
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 19 November 2014
    Published in TOG Volume 33, Issue 6

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. bidirectional path tracing
    2. importance sampling
    3. progressive photon mapping
    4. transient light transport
    5. transient rendering

    Qualifiers

    • Research-article

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)68
    • Downloads (Last 6 weeks)16
    Reflects downloads up to 24 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)DARTS: Diffusion Approximated Residual Time Sampling for Time-of-flight Rendering in Homogeneous Scattering MediaACM Transactions on Graphics10.1145/368793043:6(1-14)Online publication date: 19-Nov-2024
    • (2024)Self-Annotated 3D Geometric Learning for Smeared Points Removal2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)10.1109/WACV57701.2024.00346(3482-3491)Online publication date: 3-Jan-2024
    • (2024)Recurrent Cross-Modality Fusion for Time-of-Flight Depth DenoisingIEEE Transactions on Computational Imaging10.1109/TCI.2024.349631210(1626-1639)Online publication date: 2024
    • (2024)Single-Shot Efficient Depth Imaging Based on Time-Compressive CMOS Image Sensor2024 IEEE SENSORS10.1109/SENSORS60989.2024.10784996(1-4)Online publication date: 20-Oct-2024
    • (2024)OptoSkin: Novel LIDAR Touch Sensors for Detection of Touch and Pressure Within Wave GuidesIEEE Sensors Journal10.1109/JSEN.2024.344361524:20(33268-33280)Online publication date: 15-Oct-2024
    • (2024)Efficient Circular and Confocal Non-Line-Of-Sight Imaging With Transient Sinogram Super Resolution2024 IEEE International Conference on Image Processing (ICIP)10.1109/ICIP51287.2024.10648011(2751-2757)Online publication date: 27-Oct-2024
    • (2024)Wavefront Neural Radiance Fields for Multi-depth ReconstructionPattern Recognition10.1007/978-3-031-78456-9_8(113-129)Online publication date: 3-Dec-2024
    • (2024)Exploiting Dual-Correlation for Multi-frame Time-of-Flight DenoisingComputer Vision – ECCV 202410.1007/978-3-031-72670-5_27(473-489)Online publication date: 29-Sep-2024
    • (2024)Flying with Photons: Rendering Novel Views of Propagating LightComputer Vision – ECCV 202410.1007/978-3-031-72664-4_19(333-351)Online publication date: 29-Sep-2024
    • (2024)Time‐of‐Flight and Transient RenderingComputational Imaging for Scene Understanding10.1002/9781394284436.ch3(45-67)Online publication date: 19-Apr-2024
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media