[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2513190.2517828acmconferencesArticle/Chapter ViewAbstractPublication PagescikmConference Proceedingsconference-collections
panel

Data warehousing and OLAP over big data: current challenges and future research directions

Published: 28 October 2013 Publication History

Abstract

In this paper, we highlight open problems and actual research trends in the field of Data Warehousing and OLAP over Big Data, an emerging term in Data Warehousing and OLAP research. We also derive several novel research directions arising in this field, and put emphasis on possible contributions to be achieved by future research efforts.

References

[1]
Cuzzocrea, A., Song, I.-Y., and Davis, K. C. Analytics over Large-Scale Multidimensional Data: The Big Data Revolution! Proc. of ACM DOLAP, 2011.
[2]
Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F., and Pirahesh, H. Data Cube: A Relational Aggregation Operator Generalizing Group-by, Cross-Tab, and Sub Totals. Data Mining and Knowledge Discovery 1(1), 1997.
[3]
Harinarayan, V., Rajaraman, A., and Ullman, J. D. Implementing Data Cubes Efficiently. Proc. of SIGMOD Conference, 1996.
[4]
Chen, C., Yan, X., Zhu, F., Han, J., and Yu, P. S. Graph OLAP: A Multi-Dimensional Framework for Graph Data Analysis. Knowledge and Information Systems 21(1), 2009.
[5]
Jensen, M. R., Møller, T. H., and Pedersen, T. B. Specifying OLAP Cubes on XML Data. Proc. of SSDBM, 2001.
[6]
Zhao, P., Li, X., Xin, D., and Han, J. Graph Cube: On Warehousing And OLAP Multidimensional Networks. Proc. of ACM SIGMOD, 2011.
[7]
Yuan, Y., Lin, X., Liu, Q., Wang, W., Yu, J. X., and Zhang, Q. Efficient Computation of the Skyline Cube. Proc. of VLDB, 2005.
[8]
Dehne, F. K. H. A., Eavis,T., and Rau-Chaplin, A. The cgmCUBE Project: Optimizing Parallel Data Cube Generation for ROLAP. Distributed and Parallel Databases 19(1), 2006.
[9]
Sitaridi, E. A., and Ross, K. A. Ameliorating Memory Contention of OLAP Operators on GPU Processors. Proc. of ACM DaMoN, 2012.
[10]
Sarawagi, S., Agrawal, R., and Megiddo, N. Discovery-Driven Exploration of OLAP Data Cubes. Proc. of EDBT, 1998.
[11]
Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D. J., Rasin, A., and Silberschatz, A. HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads. PVLDB 2(1), 2009.
[12]
Agrawal, D., Das, D., and El Abbadi, A. Big Data and Cloud Computing: Current State and Future Opportunities. Proc. of EDBT, 2011.
[13]
Cuzzocrea, A., and Bertino, E. Privacy Preserving OLAP over Distributed XML Data: A Theoretically-Sound Secure-Multiparty-Computation Approach. Journal of Computer and System Sciences 77(6), 2011.
[14]
Cattell, R. Scalable SQL and NoSQL Data Stores. SIGMOD Record 39(4), 2010.
[15]
Cuzzocrea, A., and Saccà, D. Balancing Accuracy and Privacy of OLAP Aggregations on Data Cubes. Proc. of DOLAP, 2010.
[16]
Bellatreche, L., Cuzzocrea, A., and Benkrid, S. Effectively and Efficiently Designing and Querying Parallel Relational Data Warehouses on Heterogeneous Database Clusters: The F&A Approach. Journal of Database Management 23(4), 2012.
[17]
Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J. M., and Welton, C. MAD Skills: New Analysis Practices for Big Data. PVLDB 2(2), 2009.
[18]
Dean, J., and Ghemawat, S. MapReduce: Simplified Data Processing on Large Clusters. Communications of the ACM 51(1), 2008.
[19]
Khouri, S., Bellatreche, L., and Berkani, N. MODETL: A Complete MODeling and ETL Method for Designing Data Warehouses from Semantic Databases. Proc. of COMAD, 2012.
[20]
Khouri, S., and Bellatreche, L. DWOBS: Data Warehouse Design from Ontology-Based Sources. Proc. of DASFAA, 2011.
[21]
Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L., Cetin, F. B., and Babu, S. Starfish: A Self-Tuning System for Big Data Analytics. Proc. of CIDIR, 2011.
[22]
Jiang, D., Ooi, B.C., Shi, L., and Wu, S. The Performance of MapReduce: An In-depth Study. PVLDB 3(1), 2010.
[23]
Thusoo, A. Sarma, J.S., Jain, N., Shao, Z., Chakka, P. Zhang, N., Antony, S., Liu, H., and Murthy, R. Hive - A Petabyte Scale Data Warehouse Using Hadoop. Proc. of ICDE, 2010.
[24]
Bizer, C., Boncz, P. A., Brodie, M. L., and Erling, O. The Meaningful Use of Big Data: Four Perspectives - Four Challenges. SIGMOD Record 40(4), 2011.
[25]
Chen, Y., Alspaugh, S., and Katz, R. H. Interactive Analytical Processing in Big Data Systems: A Cross-Industry Study of MapReduce Workloads. PVLDB 5(12), 2012.
[26]
Cuzzocrea, A., Saccà, D., and Serafino, P. Semantics-Aware Advanced OLAP Visualization of Multidimensional Data Cubes. International Journal of Data Warehousing and Mining 3(4), 2007.
[27]
Cuzzocrea, A., Saccà, D., and Serafino, P. A Hierarchy-Driven Compression Technique for Advanced OLAP Visualization of Multidimensional Data Cubes. Proc. of DaWaK, 2006.
[28]
Cuzzocrea, A. Retrieving Accurate Estimates to OLAP Queries over Uncertain and Imprecise Multidimensional Data Streams. Proc. of SSDBM, 2011.
[29]
Cuzzocrea, A., and Chakravarthy, S. Event-based Lossy Compression for Effective and Efficient OLAP over Data Streams. Data and Knowledge Engineering 69(7), 2010.
[30]
Cuzzocrea, A. Providing Probabilistically-Bounded Approximate Answers to Non-Holistic Aggregate Range Queries in OLAP. Proc. of ACM DOLAP, 2005.

Cited By

View all
  • (2025)A formal algebra for document-oriented NoSQL data warehouses: formalisation and evaluationCluster Computing10.1007/s10586-024-04776-x28:3Online publication date: 21-Jan-2025
  • (2024)An Approach Based on Metadata for Big Data InfrastructureICT for Intelligent Systems10.1007/978-981-97-6684-0_45(557-567)Online publication date: 27-Dec-2024
  • (2023)[Vision Paper] Privacy-Preserving Data Integration2023 IEEE International Conference on Big Data (BigData)10.1109/BigData59044.2023.10386703(5614-5618)Online publication date: 15-Dec-2023
  • Show More Cited By

Index Terms

  1. Data warehousing and OLAP over big data: current challenges and future research directions

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      DOLAP '13: Proceedings of the sixteenth international workshop on Data warehousing and OLAP
      October 2013
      110 pages
      ISBN:9781450324120
      DOI:10.1145/2513190
      Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 28 October 2013

      Check for updates

      Author Tags

      1. big data
      2. big multidimensional data
      3. data warehousing
      4. olap

      Qualifiers

      • Panel

      Conference

      CIKM'13
      Sponsor:

      Acceptance Rates

      DOLAP '13 Paper Acceptance Rate 13 of 26 submissions, 50%;
      Overall Acceptance Rate 29 of 79 submissions, 37%

      Upcoming Conference

      CIKM '25

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)28
      • Downloads (Last 6 weeks)3
      Reflects downloads up to 20 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2025)A formal algebra for document-oriented NoSQL data warehouses: formalisation and evaluationCluster Computing10.1007/s10586-024-04776-x28:3Online publication date: 21-Jan-2025
      • (2024)An Approach Based on Metadata for Big Data InfrastructureICT for Intelligent Systems10.1007/978-981-97-6684-0_45(557-567)Online publication date: 27-Dec-2024
      • (2023)[Vision Paper] Privacy-Preserving Data Integration2023 IEEE International Conference on Big Data (BigData)10.1109/BigData59044.2023.10386703(5614-5618)Online publication date: 15-Dec-2023
      • (2023)Digitalization and Supply Chain AccountingManagement Accounting in Supply Chains10.1007/978-3-658-41300-2_9(281-324)Online publication date: 30-Nov-2023
      • (2022)An Overview of Data Warehouse and Data Lake in Modern Enterprise Data ManagementBig Data and Cognitive Computing10.3390/bdcc60401326:4(132)Online publication date: 7-Nov-2022
      • (2022)An Innovative Model for Extracting OLAP Cubes from NOSQL Database Based on Scalable Naïve Bayes ClassifierMathematical Problems in Engineering10.1155/2022/28607352022(1-11)Online publication date: 11-Apr-2022
      • (2022)An Intensive review on implementation of Big Data in different applications and its associated issues and Challenges2022 5th International Conference on Contemporary Computing and Informatics (IC3I)10.1109/IC3I56241.2022.10072480(670-673)Online publication date: 14-Dec-2022
      • (2022)Effective and efficient skyline query processing over attribute-order-preserving-free encrypted data in cloud-enabled databasesFuture Generation Computer Systems10.1016/j.future.2021.08.008126(237-251)Online publication date: Jan-2022
      • (2022)Digital Transformation of Health Care Services: Médikal Case StudyTechnologies and Innovation10.1007/978-3-031-19961-5_6(75-89)Online publication date: 23-Oct-2022
      • (2022)OLAP and NoSQL: Happily Ever AfterAdvances in Databases and Information Systems10.1007/978-3-031-15740-0_4(35-44)Online publication date: 29-Aug-2022
      • Show More Cited By

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media