[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Analyzing growing plants from 4D point cloud data

Published: 01 November 2013 Publication History

Abstract

Studying growth and development of plants is of central importance in botany. Current quantitative are either limited to tedious and sparse manual measurements, or coarse image-based 2D measurements. Availability of cheap and portable 3D acquisition devices has the potential to automate this process and easily provide scientists with volumes of accurate data, at a scale much beyond the realms of existing methods. However, during their development, plants grow new parts (e.g., vegetative buds) and bifurcate to different components --- violating the central incompressibility assumption made by existing acquisition algorithms, which makes these algorithms unsuited for analyzing growth. We introduce a framework to study plant growth, particularly focusing on accurate localization and tracking topological events like budding and bifurcation. This is achieved by a novel forward-backward analysis, wherein we track robustly detected plant components back in time to ensure correct spatio-temporal event detection using a locally adapting threshold. We evaluate our approach on several groups of time lapse scans, often ranging from days to weeks, on a diverse set of plant species and use the results to animate static virtual plants or directly attach them to physical simulators.

Supplementary Material

ZIP File (a157-li.zip)
Supplemental material.

References

[1]
Ahmed, N., Theobalt, C., Dobrev, P., Seidel, H.-P., and Thrun, S. 2008. Robust fusion of dynamic shape and normal capture for high-quality reconstruction of time-varying geometry. In IEEE CVPR, 1--8.
[2]
Akhter, I., Simon, T., Khan, S., Matthews, I., and Sheikh, Y. 2012. Bilinear spatiotemporal basis models. ACM TOG 31, 2, 17:1--17:12.
[3]
Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., and Silva, C. T. 2001. Point set surfaces. In IEEE Vis, VIS '01, 21--28.
[4]
Beeler, T., Hahn, F., Bradley, D., Bickel, B., Beardsley, P., Gotsman, C., Sumner, R. W., and Gross, M. 2011. High-quality passive facial performance capture using anchor frames. ACM TOG 30, 75:1--75:10.
[5]
Bojsen-Hansen, M., Li, H., and Wojtan, C. 2012. Tracking surfaces with evolving topology. ACM TOG 31, 4, 53:1--53:10.
[6]
Boykov, Y., and Kolmogorov, V. 2004. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE TPAMI 26, 9, 1124--1137.
[7]
Boykov, Y., Veksler, O., and Zabih, R. 2001. Fast approximate energy minimization via graph cuts. IEEE TPAMI 23, 11, 1222--1239.
[8]
Bradley, D., Popa, T., Sheffer, A., Heidrich, W., and Boubekeur, T. 2008. Markerless garment capture. ACM TOG 27, 3, 99:1--99:9.
[9]
Brendel, W., and Todorovic, S. 2011. Learning spatiotemporal graphs of human activities. In IEEE ICCV, 778--785.
[10]
Chang, W., and Zwicker, M. 2009. Range scan registration using reduced deformable models. CGF 28, 2, 447--456.
[11]
Chang, W., and Zwicker, M. 2011. Global registration of dynamic range scans for articulated model reconstruction. ACM TOG 30, 3, 26:1--26:15.
[12]
Chen, X., and Laux, T. 2012. Plant development - a snapshot in 2012. Current Opinion in Plant Biology 15, 1, 1--3.
[13]
Curless, B. 1999. From range scans to 3d models. Proc. of SIGGRAPH 33, 4 (Nov.), 38--41.
[14]
de Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.-P., and Thrun, S. 2008. Performance capture from sparse multi-view video. ACM TOG 27, 3, 98:1--98:10.
[15]
Fernandez, R., Das, P., Mirabet, V., Moscardi, E., Traas, J., Verdeil, J.-L., Malandain, G., and Godin, C. 2010. Imaging plant growth in 4d: robust tissue reconstruction and lineaging at cell resolution. Nature Methods 7, 7, 547--553.
[16]
Gaur, U., Zhu, Y., Song, B., and Roy-Chowdhury, A. 2011. A "string of feature graphs" model for recognition of complex activities in natural videos. In IEEE ICCV, 2595--2602.
[17]
Huang, H., Li, D., Zhang, H., Ascher, U., and Cohen-Or, D. 2009. Consolidation of unorganized point clouds for surface reconstruction. ACM TOG 28, 5, 176:1--176:7.
[18]
Huang, H., Wu, S., Cohen-Or, D., Gong, M., Zhang, H., Li, G., and Chen, B. 2013. L1-medial skeleton of point cloud. ACM TOG 32.
[19]
Kalal, Z., Mikolajczyk, K., and Matas, J. 2010. Forward-backward error: Automatic detection of tracking failures. In Int. Conf. on Pattern Recognition, 2756--2759.
[20]
Kazhdan, M., Bolitho, M., and Hoppe, H. 2006. Poisson surface reconstruction. In Proc. SGP, 61--70.
[21]
Kevin, T., Fei-Fei, L., and Koller, D. 2012. Learning latent temporal structure for complex event detection. In IEEE CVPR.
[22]
Kolmogorov, V., and Zabih, R. 2004. What energy functions can be minimized via graph cuts? IEEE TPAMI 26, 2, 147--159.
[23]
Li, C., Deussen, O., Song, Y.-Z., Willis, P., and Hall, P. 2011. Modeling and generating moving trees from video. ACM TOG 30, 6, 127:1--127:12.
[24]
Li, H., Luo, L., Vlasic, D., Peers, P., Popović, J., Pauly, M., and Rusinkiewicz, S. 2012. Temporally coherent completion of dynamic shapes. ACM TOG 31, 1, 2:1--2:11.
[25]
Liao, M., Zhang, Q., Wang, H., Yang, R., and Gong, M. 2009. Modeling deformable objects from a single depth camera. In IEEE ICCV, 167--174.
[26]
Livny, Y., Yan, F., Olson, M., Chen, B., Zhang, H., and El-Sana, J. 2010. Automatic reconstruction of tree skeletal structures from point clouds. ACM TOG 29, 6, 151:1--151:8.
[27]
Lu, C., Chelikani, S., Jaffray, D., Milosevic, M., Staib, L., and Duncan, J. 2012. Simultaneous nonrigid registration, segmentation, and tumor detection in MRI guided cervical cancer radiation therapy. IEEE Trans. on Medical Imaging 31, 6, 1213--1227.
[28]
Mitra, N. J., Flöry, S., Ovsjanikov, M., Gelfand, N., Guibas, L., and Pottmann, H. 2007. Dynamic geometry registration. In Proc. SGP, 173--182.
[29]
Mündermann, L., Erasmus, Y., Lane, B., Coen, E., and Prusinkiewicz, P. 2005. Quantitative modeling of arabidopsis development. Plant physiology 139, 2, 960--968.
[30]
Neubert, B., Franken, T., and Deussen, O. 2007. Approximate image-based tree-modeling using particle flows. ACM TOG 26, 3.
[31]
Pirk, S., Niese, T., Deussen, O., and Neubert, B. 2012. Capturing and animating the morphogenesis of polygonal tree models. ACM TOG 31, 6 (Nov.), 169:1--169:10.
[32]
Pirk, S., Stava, O., Kratt, J., Said, M. A. M., Neubert, B., Měch, R., Benes, B., and Deussen, O. 2012. Plastic trees: interactive self-adapting botanical tree models. ACM TOG 31, 4 (July), 50:1--50:10.
[33]
Pirsiavash, H., and Ramanan, D. 2012. Detecting activities of daily living in first-person camera views. In IEEE CVPR.
[34]
Pons-Moll, G., Baak, A., Gall, J., Leal-Taixe, L., Muller, M., Seidel, H.-P., and Rosenhahn, B. 2011. Outdoor human motion capture using inverse kinematics and von mises-fisher sampling. In IEEE ICCV, 1243--1250.
[35]
Popa, T., South-Dickinson, I., Bradley, D., Sheffer, A., and Heidrich, W. 2010. Globally consistent space-time reconstruction. CGF 29, 5, 1633--1642.
[36]
Prusinkiewicz, P., and Lindenmayer, A. 1996. The algorithmic beauty of plants.
[37]
Prusinkiewicz, P., and Runions, A. 2012. Computational models of plant development and form. New Phytologist 193, 3, 549--569.
[38]
Quan, L., Tan, P., Zeng, G., Yuan, L., Wang, J., and Kang, S. B. 2006. Image-based plant modeling. ACM TOG 25, 3, 599--604.
[39]
Rozenberg, G., and Salomaa, A. 1980. Mathematical Theory of L Systems. Academic Press, Inc., Orlando, FL, USA.
[40]
Sharf, A., Alcantara, D. A., Lewiner, T., Greif, C., Sheffer, A., Amenta, N., and Cohen-Or, D. 2008. Space-time surface reconstruction using incompressible flow. ACM TOG 27, 5, 110:1--110:10.
[41]
Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., and Blake, A. 2011. Real-time human pose recognition in parts from single depth images. In IEEE CVPR, 1297--1304.
[42]
Song, Z., and Chung, R. 2008. Use of lcd panel for calibrating structured-light-based range sensing system. IEEE Trans. on Instrumentation and Measurement 57, 11, 2623--2630.
[43]
Song, Z., Chung, R., and Zhang, X.-T. 2013. An accurate and robust strip-edge-based structured light means for shiny surface micromeasurement in 3D. IEEE Trans. on Industrial Electronics 60, 3, 1023--1032.
[44]
Tevs, A., Berner, A., Wand, M., Ihrke, I., Bokeloh, M., Kerber, J., and Seidel, H.-P. 2012. Animation cartographyintrinsic reconstruction of shape and motion. ACM TOG 31, 2, 12:1--12:15.
[45]
Thrun, S., and Montemerlo, M. 2005. The graphslam algorithm with applications to large-scale mapping of urban structures. Int. J. on Robotics Research 25, 5/6, 403--430.
[46]
Vlasic, D., Baran, I., Matusik, W., and Popović, J. 2008. Articulated mesh animation from multi-view silhouettes. ACM TOG 27, 3, 97:1--97:9.
[47]
Wand, M., Adams, B., Ovsjanikov, M., Berner, A., Bokeloh, M., Jenke, P., Guibas, L., Seidel, H.-P., and Schilling, A. 2009. Efficient reconstruction of nonrigid shape and motion from real-time 3d scanner data. ACM TOG 28, 2, 15:1--15:15.
[48]
Xu, H., Gossett, N., and Chen, B. 2007. Knowledge and heuristic-based modeling of laser-scanned trees. ACM TOG 26, 4.
[49]
Yamazaki, S., Narasimhan, S. G., Baker, S., and Kanade, T. 2007. Coplanar shadowgrams for acquiring visual hulls of intricate objects. In IEEE ICCV, 1--8.
[50]
Yamazaki, S., Narasimhan, S. G., Baker, S., and Kanade, T. 2009. The theory and practice of coplanar shadowgram imaging for acquiring visual hulls of intricate objects. IJCV 81, 3, 259--280.
[51]
Zhao, Y., and Barbič, J. 2013. Interactive authoring of simulation-ready plants. ACM TOG 32, 4.
[52]
Zheng, Q., Sharf, A., Tagliasacchi, A., Chen, B., Zhang, H., Sheffer, A., and Cohen-Or, D. 2010. Consensus skeleton for non-rigid space-time registration. CGF 29, 635--644.

Cited By

View all
  • (2025)3D-NOD: 3D New Organ Detection in Plant Growth by a Spatiotemporal Point Cloud Deep Segmentation FrameworkPlant Phenomics10.1016/j.plaphe.2025.100002(100002)Online publication date: Feb-2025
  • (2025)Comprehensive review on 3D point cloud segmentation in plantsArtificial Intelligence in Agriculture10.1016/j.aiia.2025.01.006Online publication date: Jan-2025
  • (2025)Enhanced Plant Phenotyping Through Spatio-Temporal Point Cloud RegistrationAdvances in Computer Graphics10.1007/978-3-031-81806-6_27(358-370)Online publication date: 27-Feb-2025
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 32, Issue 6
November 2013
671 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2508363
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 November 2013
Published in TOG Volume 32, Issue 6

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. 4D point cloud
  2. event detection
  3. growth analysis

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)94
  • Downloads (Last 6 weeks)18
Reflects downloads up to 02 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2025)3D-NOD: 3D New Organ Detection in Plant Growth by a Spatiotemporal Point Cloud Deep Segmentation FrameworkPlant Phenomics10.1016/j.plaphe.2025.100002(100002)Online publication date: Feb-2025
  • (2025)Comprehensive review on 3D point cloud segmentation in plantsArtificial Intelligence in Agriculture10.1016/j.aiia.2025.01.006Online publication date: Jan-2025
  • (2025)Enhanced Plant Phenotyping Through Spatio-Temporal Point Cloud RegistrationAdvances in Computer Graphics10.1007/978-3-031-81806-6_27(358-370)Online publication date: 27-Feb-2025
  • (2024)Delving into the Potential of Deep Learning Algorithms for Point Cloud Segmentation at Organ Level in Plant PhenotypingRemote Sensing10.3390/rs1617329016:17(3290)Online publication date: 4-Sep-2024
  • (2024)Cotton morphological traits tracking through spatiotemporal registration of terrestrial laser scanning time-series dataFrontiers in Plant Science10.3389/fpls.2024.143612015Online publication date: 1-Aug-2024
  • (2024)Interactive Invigoration: Volumetric Modeling of Trees with StrandsACM Transactions on Graphics10.1145/365820643:4(1-13)Online publication date: 19-Jul-2024
  • (2024)Robust colored point cloud alignment based on L*a*b* guided and Cauchy kernelComputational Intelligence10.1111/coin.1265740:3Online publication date: 17-Jun-2024
  • (2023)PointDMM: A Deep-Learning-Based Semantic Segmentation Method for Point Clouds in Complex Forest EnvironmentsForests10.3390/f1412227614:12(2276)Online publication date: 21-Nov-2023
  • (2023)EmergeNet: A novel deep-learning based ensemble segmentation model for emergence timing detection of coleoptileFrontiers in Plant Science10.3389/fpls.2023.108477814Online publication date: 3-Feb-2023
  • (2023)Immersive and interactive visualization of 3D spatio-temporal data using a space time hypercube: Application to cell division and morphogenesis analysisFrontiers in Bioinformatics10.3389/fbinf.2023.9989913Online publication date: 8-Mar-2023
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media