[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
column

20 years of pattern mining: a bibliometric survey

Published: 17 March 2014 Publication History

Abstract

In 1993, Rakesh Agrawal, Tomasz Imielinski and Arun N. Swami published one of the founding papers of Pattern Mining: "Mining Association Rules between Sets of Items in Large Databases". Beyond the introduction to a new problem, it introduced a new methodology in terms of resolution and evaluation. For two decades, Pattern Mining has been one of the most active fields in Knowledge Discovery in Databases. This paper provides a bibliometric survey of the literature relying on 1,087 publications from five major international conferences: KDD, PKDD, PAKDD, ICDM and SDM. We first measured a slowdown of research dedicated to Pattern Mining while the KDD field continues to grow. Then, we quantified the main contributions with respect to languages, constraints and condensed representations to outline the current directions. We observe a sophistication of languages over the last 20 years, although association rules and itemsets are so far the most studied ones. As expected, the minimal support constraint predominates the extraction of patterns with approximately 50% of the publications. Finally, condensed representations used in 10% of the papers had relative success particularly between 2005 and 2008.

References

[1]
R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets of items in large databases. In SIGMOD Conference, pages 207--216. ACM Press, 1993.
[2]
R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In J. B. Bocca, M. Jarke, and C. Zaniolo, editors, VLDB, pages 487--499, 1994.
[3]
R. Agrawal and R. Srikant. Mining sequential patterns. In P. S. Yu and A. L. P. Chen, editors, ICDE, pages 3--14. IEEE Computer Society, 1995.
[4]
J. L. Balcázar. Minimum-size bases of association rules. In W. Daelemans, B. Goethals, and K. Morik, editors, ECML/PKDD (1), volume 5211 of Lecture Notes in Computer Science, pages 86--101. Springer, 2008.
[5]
L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees. Wadsworth, 1984.
[6]
T. Calders and B. Goethals. Non-derivable itemset mining. Data Min. Knowl. Discov., 14(1):171--206, 2007.
[7]
T. Calders, C. Rigotti, and J.-F. Boulicaut. A survey on condensed representations for frequent sets. In Constraint-Based Mining and Inductive Databases, volume 3848 of LNCS, pages 64--80. Springer, 2004.
[8]
D. Chavalarias and J.-P. Cointet. Phylomemetic patterns in science evolutionthe rise and fall of scientific fields. PLoS ONE, 8(2):e54847, 02 2013.
[9]
S. Deng, Y. Tian, and H. Zhang. Using the bibliometric analysis to evaluate global scientific production of data mining papers. In DBTA, pages 233--238. IEEE Computer Society, 2009.
[10]
U. M. Fayyad, G. Piatetsky-Shapiro, and R. Uthurusamy. Summary from the KDD-03 panel: data mining: the next 10 years. SIGKDD Explor. Newsl., 5(2):191--196, Dec. 2003.
[11]
J. Fürnkranz and A. J. Knobbe. Guest editorial: Global modeling using local patterns. Data Min. Knowl. Discov., 21(1):1--8, 2010.
[12]
A. Gallo, T. D. Bie, and N. Cristianini. MINI: mining informative non-redundant itemsets. In J. N. Kok, J. Koronacki, R. L. de Mántaras, S. Matwin, D. Mladenic, and A. Skowron, editors, PKDD, volume 4702 of Lecture Notes in Computer Science, pages 438--445. Springer, 2007.
[13]
J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern mining: current status and future directions. Data Min. Knowl. Discov., 15(1):55--86, 2007.
[14]
D. J. Hand. Pattern detection and discovery. In Pattern Detection and Discovery, volume 2447 of LNCS, pages 1--12. Springer, 2002.
[15]
J. E. Hirsch. An index to quantify an individual's scientific research output. Proceedings of the National Academy of Sciences, 102(46):16569--16572, Nov. 2005.
[16]
C. Jiang, F. Coenen, and M. Zito. A survey of frequent subgraph mining algorithms. Knowledge Eng. Review, 28(1):75--105, 2013.
[17]
B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. In R. Agrawal, P. E. Stolorz, and G. Piatetsky-Shapiro, editors, KDD, pages 80--86. AAAI Press, 1998.
[18]
H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge discovery. Data Min. Knowl. Discov., 1(3):241--258, 1997.
[19]
J. Pei and J. Han. Constrained frequent pattern mining: a pattern-growth view. SIGKDD Explorations, 4(1):31--39, 2002.
[20]
J. Pei, J. Han, and L. V. S. Lakshmanan. Pushing convertible constraints in frequent itemset mining. Data Min. Knowl. Discov., 8(3):227--252, 2004.
[21]
G. Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules. In Knowledge Discovery in Databases, pages 229--248. AAAI/MIT Press, 1991.
[22]
G. Piatetsky-Shapiro. Knowledge discovery in databases: 10 years after. SIGKDD Explor. Newsl., 1(2):59--61, Jan. 2000.
[23]
J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81--106, 1986.
[24]
A. Salam and M. S. H. Khayal. Mining top-k frequent patterns without minimum support threshold. Knowl. Inf. Syst., 30(1):57--86, 2012.
[25]
J. Vreeken. Making pattern mining useful. SIGKDD Explorations, 12(1):75--76, 2010.
[26]
M. Winslett. Interview with Rakesh Agrawal. SIGMOD Record, 32(3):83--90, 2003.

Cited By

View all
  • (2021)Anytime mining of sequential discriminative patterns in labeled sequencesKnowledge and Information Systems10.1007/s10115-020-01523-763:2(439-476)Online publication date: 1-Feb-2021
  • (2019)SeqScout: Using a Bandit Model to Discover Interesting Subgroups in Labeled Sequences2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA)10.1109/DSAA.2019.00022(81-90)Online publication date: Oct-2019
  • (2019)Mining high influence co-location patterns from instances with attributesEvolutionary Intelligence10.1007/s12065-019-00321-7Online publication date: 18-Nov-2019
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM SIGKDD Explorations Newsletter
ACM SIGKDD Explorations Newsletter  Volume 15, Issue 1
June 2013
50 pages
ISSN:1931-0145
EISSN:1931-0153
DOI:10.1145/2594473
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 17 March 2014
Published in SIGKDD Volume 15, Issue 1

Check for updates

Qualifiers

  • Column

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)8
  • Downloads (Last 6 weeks)0
Reflects downloads up to 11 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2021)Anytime mining of sequential discriminative patterns in labeled sequencesKnowledge and Information Systems10.1007/s10115-020-01523-763:2(439-476)Online publication date: 1-Feb-2021
  • (2019)SeqScout: Using a Bandit Model to Discover Interesting Subgroups in Labeled Sequences2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA)10.1109/DSAA.2019.00022(81-90)Online publication date: Oct-2019
  • (2019)Mining high influence co-location patterns from instances with attributesEvolutionary Intelligence10.1007/s12065-019-00321-7Online publication date: 18-Nov-2019
  • (2018)Scaling-up reasoning and advanced analytics on BigDataTheory and Practice of Logic Programming10.1017/S147106841800041818:5-6(806-845)Online publication date: 5-Sep-2018
  • (2018)Redescription mining augmented with random forest of multi-target predictive clustering treesJournal of Intelligent Information Systems10.1007/s10844-017-0448-550:1(63-96)Online publication date: 1-Feb-2018
  • (2017)Mining convex polygon patterns with formal concept analysisProceedings of the 26th International Joint Conference on Artificial Intelligence10.5555/3172077.3172085(1425-1432)Online publication date: 19-Aug-2017
  • (2017)Mining Top-k Co-Occurrence Patterns across Multiple StreamsIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2017.272853729:10(2249-2262)Online publication date: 1-Oct-2017
  • (2017)A Pattern Mining Approach to Study Strategy Balance in RTS GamesIEEE Transactions on Computational Intelligence and AI in Games10.1109/TCIAIG.2015.25118199:2(123-132)Online publication date: Jun-2017
  • (2017)New Artificial Intelligence approaches for future UAV Ground Control Stations2017 IEEE Congress on Evolutionary Computation (CEC)10.1109/CEC.2017.7969645(2775-2782)Online publication date: 5-Jun-2017
  • (2017)Two Decades of Pattern Mining: Principles and MethodsBusiness Intelligence10.1007/978-3-319-61164-8_3(59-78)Online publication date: 4-Jul-2017
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media