[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2578726.2578753acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmrConference Proceedingsconference-collections
tutorial
Open access

Experiments with Segmentation Strategies for Passage Retrieval in Audio-Visual Documents

Published: 01 April 2014 Publication History

Abstract

This paper deals with Information Retrieval from audio-visual recordings. Such recordings are often quite long and users may want to find the exact starting points of relevant passages they search for. In Passage Retrieval, the recordings are automatically segmented into smaller parts, on which the standard retrieval techniques are applied. In this paper, we discuss various techniques for segmentation of audio-visual recordings and focus on machine learning approaches which decide on segment boundaries based on various features combined in a decision-tree model. Our experiments are carried out on the data used for the Search and Hyperlinking Task and Similar Segments in Social Speech Task of the MediaEval Benchmark 2013.

References

[1]
J. Ballantine. Topic segmentation in spoken dialogue. Master's thesis, Macquarie University, 2004.
[2]
D. Beeferman, A. Berger, and J. Lafferty. Statistical models for text segmentation. Machine Learning, 34(1-3):177--210, Feb. 1999.
[3]
J. P. Callan. Passage-level evidence in document retrieval. In Proc. of SIGIR, pages 302--310, Dublin, Ireland, 1994.
[4]
F. Y. Y. Choi. Advances in domain independent linear text segmentation. In Proc. of NAACL, pages 26--33, Seattle, WA, USA, 2000.
[5]
M. Eskevich, G. J. F. Jones, R. Aly, R. Ordelman, S. Chen, D. Nadeem, C. Guinaudeau, G. Gravier, P. Sébillot, T. De Nies, P. Debevere, R. Van de Walle, P. Galuščáková, P. Pecina, and M. Larson. Multimedia information seeking through search and hyperlinking. In Proc. of ICMR, pages 287--294, Dallas, TX, USA, 2013.
[6]
M. Eskevich, G. J. F. Jones, S. Chen, R. Aly, and R. Ordelman. The Search and Hyperlinking Task at MediaEval 2013. In Proc. of MediaEval, Barcelona, Spain, 2013.
[7]
M. Eskevich, G. J. F. Jones, C. Wartena, M. Larson, R. Aly, T. Verschoor, and R. Ordelman. Comparing retrieval effectiveness of alternative content segmentation methods for internet video search. In Proc. of CBMI, Annecy, France, 2012.
[8]
P. Galuščáková and P. Pecina. CUNI at MediaEval 2012 Search and Hyperlinking Task. In Proc. of MediaEval, Pisa, Italy, 2012.
[9]
M. A. Hearst. TextTiling: Segmenting text into multi-paragraph subtopic passages. Computational Linguistics, 23(1):33--64, Mar. 1997.
[10]
D. Hiemstra. Using language models for information retrieval. PhD thesis, University of Twente, Enschede, Netherlands, 2001.
[11]
P.-Y. Hsueh and J. D. Moore. Combining multiple knowledge sources for dialogue segmentation in multimedia archives. In Proc. of ACL, pages 1016--1023, Prague, Czech Republic, 2007.
[12]
M. Kaszkiel and J. Zobel. Passage retrieval revisited. In Proc. of SIGIR, pages 178--185, Philadelphia, PA, USA, 1997.
[13]
M. Kaszkiel and J. Zobel. Effective ranking with arbitrary passages. Journal of the Am. Society for IST, 52(4):344--364, Jan. 2001.
[14]
D. Kauchak and F. Chen. Feature-based segmentation of narrative documents. In Proc. of ACL Workshop on Feature Engineering for ML in NLP, pages 32--39, Ann Arbor, MI, USA, 2005.
[15]
L. Lamel and J.-L. Gauvain. Speech processing for audio indexing. In Proc. of GoTAL 2008, Advances in NLP, pages 4--15, Gothenburg, Sweden, 2008.
[16]
B. Liu and D. W. Oard. One-sided measures for evaluating ranked retrieval effectiveness with spontaneous sonversational speech. In Proc. of SIGIR, pages 673--674, Seattle, WA, USA, 2006.
[17]
I. Malioutov and R. Barzilay. Minimum cut model for spoken lecture segmentation. In Proc. of ACL, pages 25--32, Sydney, Australia, 2006.
[18]
C. D. Manning. Rethinking text segmentation models: An information extraction case study. Technical report, University of Sydney, 1998.
[19]
E. Mittendorf and P. Schäuble. Document and passage retrieval based on hidden Markov models. In Proc. of SIGIR, pages 318--327, Dublin, Ireland, 1994.
[20]
M. Mohri, P. Moreno, and E. Weinstein. Discriminative topic segmentation of text and speech. Journal of ML Research - AISTATS Proceedings Track, 9(1):533--540, 2010.
[21]
R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo, CA, 1993.
[22]
G. Salton, J. Allan, and C. Buckley. Approaches to passage retrieval in full text information systems. In Proc. of SIGIR, pages 49--58, Pittsburgh, PA, USA, 1993.
[23]
H. Schwenk, P. Lambert, L. Barrault, C. Servan, H. Afli, S. Abdul-Rauf, and K. Shah. LIUM's SMT machine translation systems for WMT 2011. In Proc. of WMT, pages 464--469, Edinburgh, UK, 2011.
[24]
A. Smeaton, W. Kraaij, and P. Over. TRECVID - an overview. In Proc. of TRECVID, Gaithersburg, MD, USA, 2003.
[25]
A. F. Smeaton, W. Kraaij, and P. Over. TRECVID 2004 - an overview. In Proc. of TRECVID, Gaithersburg, MD, USA, 2004.
[26]
M. Spousta. Featurama -- a library that implements various sequence-labeling algorithms. http://sourceforge.net/projects/featurama/.
[27]
N. Stokes, J. Carthy, and A. F. Smeaton. SeLeCT: a lexical cohesion based news story segmentation system. AI Commun., 17(1):3--12, 2004.
[28]
J. Tiedemann and J. Mur. Simple is best: experiments with different document segmentation strategies for passage retrieval. In Proc. IRQA Coling, pages 17--25, Manchester, UK, 2008.
[29]
E. Voorhees. The Trec-8 question answering track report, 1999.
[30]
N. G. Ward, S. D. Werner, D. G. Novick, E. E. Shriberg, C. Oertel, L.-P. Morency, and T. Kawahara. The similar segments in social speech task. In Proc. of MediaEval, Barcelona, Spain, 2013.
[31]
C. Wartena. Comparing segmentation strategies for efficient video passage retrieval. In Proc. of CBMI, Annecy, France, 2012.
[32]
F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80--83, 1945.

Cited By

View all
  • (2015)A prosody-based vector-space model of dialog activity for information retrievalSpeech Communication10.1016/j.specom.2015.01.00468:C(85-96)Online publication date: 1-Apr-2015

Index Terms

  1. Experiments with Segmentation Strategies for Passage Retrieval in Audio-Visual Documents

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ICMR '14: Proceedings of International Conference on Multimedia Retrieval
    April 2014
    564 pages
    ISBN:9781450327824
    DOI:10.1145/2578726
    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    In-Cooperation

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 01 April 2014

    Check for updates

    Author Tags

    1. Passage retrieval
    2. Semantic segmentation
    3. Speech retrieval

    Qualifiers

    • Tutorial
    • Research
    • Refereed limited

    Conference

    ICMR '14
    ICMR '14: International Conference on Multimedia Retrieval
    April 1 - 4, 2014
    Glasgow, United Kingdom

    Acceptance Rates

    ICMR '14 Paper Acceptance Rate 21 of 111 submissions, 19%;
    Overall Acceptance Rate 254 of 830 submissions, 31%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)47
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 12 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2015)A prosody-based vector-space model of dialog activity for information retrievalSpeech Communication10.1016/j.specom.2015.01.00468:C(85-96)Online publication date: 1-Apr-2015

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media