[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2424321.2424339acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article

Of motifs and goals: mining trajectory data

Published: 06 November 2012 Publication History

Abstract

In response to the increasing volume of trajectory data obtained, e.g., from tracking athletes, animals, or meteorological phenomena, we present a new space-efficient algorithm for the analysis of trajectory data. The algorithm combines techniques from computational geometry, data mining, and string processing and offers a modular design that allows for a user-guided exploration of trajectory data incorporating domain-specific constraints and objectives.

References

[1]
M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with enhanced suffix arrays. Journal of Discrete Algorithms, 2:53--86, 2004.
[2]
H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves. International Journal on Computational Geometry and Applications, 5:75--91, 1995.
[3]
Amisco. www.sport-universal.com.
[4]
K. Buchin, M. Buchin, J. Gudmundsson, M. Löffler, and J. Luo. Detecting commuting patterns by clustering subtrajectories. International Journal of Computational Geometry and Applications, 21(3):253--282, 2011.
[5]
M. Buchin, A. Driemel, M. J. van Kreveld, and V. Sacristan. An algorithmic framework for segmenting trajectories based on spatio-temporal criteria. In Proc. 18th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems, pp. 202--211, 2010.
[6]
F. Chazal, D. Chen, L. J. Guibas, X. Jiang, and C. Sommer. Data-driven trajectory smoothing. In Proc. 19th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems, pp. 251--260, 2011.
[7]
D. Z. Chen and O. Daescu. Space-efficient algorithms for approximating polygonal curves in two dimensional space. In Proc. 4th Annual International Conference on Computing and Combinatorics, pp. 45--54, 1998.
[8]
K. Chu and M. Wong. Fast time-series searching with scaling and shifting. In Proc. 18th ACM Symposium on Principles of Database Systems, pp. 237--248, 1999.
[9]
A. Efrat, S. Venkatasubramanian, and Q. Fan. Curve matching, time warping, and light fields: New algorithms for computing similarity between curves. Journal on Mathematic Imaging and Vision, 27(3):203--216, 2007.
[10]
M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proc. Second International Conference on Knowledge Discovery and Data Mining, pp. 226--231, 1996.
[11]
A. U. Frank. Socio-economic units: Their life and motion. In A. U. Frank, J. Raper, and J. P. Cheylan, editors, Life and motion of socio-economic units, pp. 21--34. Taylor & Francis, London, 2001.
[12]
S. Gaffney, A. Robertson, P. Smyth, S. Camargo, and M. Ghil. Probabilistic clustering of extratropical cyclones using regression mixture models. Climate Dynamic, 29(4):423--440, 2007.
[13]
S. Gaffney and P. Smyth. Trajectory clustering with mixtures of regression models. In Proc. 5th ACM International Conference on Knowledge Discovery and Data Mining, pp. 63--72, 1999.
[14]
J. Gudmundsson, P. Laube, and T. Wolle. Computational movement analysis. In W. Kresse and D. Danko, editors, Springer Handbook of Geographic Information, pp. 725--741. Springer, 2012.
[15]
J. Gudmundsson and N. Valladares. A GPU approach to subtrajectory clustering using the Fréchet distance. Proc. 20th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems, to appear, 2012.
[16]
J. Gudmundsson and T. Wolle. Football analysis using spatio-temporal tools. Proc. 20th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems, to appear, 2012.
[17]
J. Harguess and J. K. Aggarwal. Semantic labeling of track events using time series segmentation and shape analysis. In 16th IEEE International Conference on Image Processing, pp. 4317--4320, 2009.
[18]
J. Hershberger and J. Snoeyink. Cartographic line simplification and polygon CSG formulae in O(n log* n) time. Computational Geometry: Theory and Applications, 11(3-4):93--103, 1998.
[19]
J. Kärkkäinen and P. Sanders. Simple linear work suffix array construction. In Proc. 30th International Colloquium on Automata, Languages and Programming, pp. 943--955, 2003.
[20]
E. J. Keogh and C. A. Ratanamahatana. Exact indexing of dynamic time warping. Knowledge and Information Systems, pp. 358--386, 2005.
[21]
M. P. Kwan. Interactive geovisualization of activity-travel patterns using three dimensional geographical information systems: A methodological exploration with a large data set. Transportation Research Part C, 8(1-6):185--203, 2000.
[22]
J. Larson, E. Bradlow, and P. Fader. An exploratory look at supermarket shopping paths. Intl. Journal of Research in Marketing, 22(4):395--414, 2005.
[23]
J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: A partition-and-group framework. In Proc. ACM International Conference on Management of Data, pp. 593--604, 2007.
[24]
J. Lin, E. J. Keogh, S. Lonardi, and B. Y.-C. Chiu. A symbolic representation of time series, with implications for streaming algorithms. In Proc. 8th ACM Workshop on Research Issues in Data Mining and Knowledge Discovery, pp. 2--11, 2003.
[25]
N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, and D. Cheung. Mining, indexing, and querying historical spatiotemporal data. In Proc. 10th International ACM Conference On Knowledge Discovery and Data Mining, pp. 236--245, 2004.
[26]
H. Messel, A. Wells, and W. J. Green. The alligator region river systems. Pergamon Press, 1979.
[27]
R. Nathan. An emerging movement ecology paradigm. PNAS, 105(49):19050--1, 2008.
[28]
G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings -- Practical on-line search algorithms for texts and biological sequences. Cambridge University Press, 2002.
[29]
S. Rasetic, J. Sander, J. Elding, and M. A. Nascimento. A trajectory splitting model for efficient spatio-temporal indexing. In Proc. 31st International Conference on Very Large Data Bases, pp. 934--945, 2005.
[30]
C. Rutz and G. C. Hays. New frontiers in biologging science. Biology letters, 5(3):289--292, 2009.
[31]
Y. Sakurai, M. Yoshikawa, and C. Faloutsos. FTW: fast similarity search under the time warping distance. In Proc. 24th ACM Symposium on Principles of Database Systems, pp. 326--337, 2005.
[32]
G. K. Sandve and F. Drabløs. A survey of motif discovery methods in an integrated framework. Biology Direct, 11(1), 2006.
[33]
J. Shamoun-Baranes, E. van Loon, R. Purves, B. Speckmann, D. Weiskopf, and C. Camphuysen. Analysis and visualization of animal movement. Biology Letters, 8(1):6--9, 2012.
[34]
J. J. Thomas and K. A. Cook. A visual analytics agenda. IEEE Computer Graphics and Applications, 26(1):10--13, 2006.
[35]
M. Vlachos, D. Gunopoulos, and G. Kollios. Discovering similar multidimensional trajectories. In Proc. 18th International Conference on Data Engineering, pp. 673--682, 2002.
[36]
G. J. W. Webb and H. Messel. Movement and dispersal patterns of crocodylus porosus in some rivers of arnhem land, northern australia. Australian Wildlife Research, 5(2):263--283, 1978.
[37]
G. Welch and G. Bishop. An introduction to the Kalman filter. Technical Report TR 95-041, Dept. of Computer Science, UNC Chapel Hill, 1995. Updated June 2006, http://www.cs.unc.edu/~welch/kalman.
[38]
Y. Zhou and T. S. Huang. 'Bag of Segments' for motion trajectory analysis. In 15th IEEE International Conference on Image Processing, pp. 757--760, 2008.

Cited By

View all
  • (2024)EnvClus*: Extracting Common Pathways for Effective Vessel Trajectory ForecastingIEEE Access10.1109/ACCESS.2023.334908112(3860-3873)Online publication date: 2024
  • (2023)Analyzing Semantically Enriched TrajectoriesKI - Künstliche Intelligenz10.1007/s13218-023-00818-538:3(127-131)Online publication date: 14-Nov-2023
  • (2021)K-means for semantically enriched trajectoriesProceedings of the 1st ACM SIGSPATIAL International Workshop on Animal Movement Ecology and Human Mobility10.1145/3486637.3489495(38-47)Online publication date: 2-Nov-2021
  • Show More Cited By

Index Terms

  1. Of motifs and goals: mining trajectory data

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SIGSPATIAL '12: Proceedings of the 20th International Conference on Advances in Geographic Information Systems
    November 2012
    642 pages
    ISBN:9781450316910
    DOI:10.1145/2424321
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    In-Cooperation

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 06 November 2012

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. space-efficiency
    2. trajectory clustering

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    SIGSPATIAL'12
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 257 of 1,238 submissions, 21%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)8
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 09 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)EnvClus*: Extracting Common Pathways for Effective Vessel Trajectory ForecastingIEEE Access10.1109/ACCESS.2023.334908112(3860-3873)Online publication date: 2024
    • (2023)Analyzing Semantically Enriched TrajectoriesKI - Künstliche Intelligenz10.1007/s13218-023-00818-538:3(127-131)Online publication date: 14-Nov-2023
    • (2021)K-means for semantically enriched trajectoriesProceedings of the 1st ACM SIGSPATIAL International Workshop on Animal Movement Ecology and Human Mobility10.1145/3486637.3489495(38-47)Online publication date: 2-Nov-2021
    • (2021)Detecting representative trajectories from global AIS datasets2021 IEEE International Intelligent Transportation Systems Conference (ITSC)10.1109/ITSC48978.2021.9564657(2278-2285)Online publication date: 19-Sep-2021
    • (2021)On discovering motifs and frequent patterns in spatial trajectories with discrete Fréchet distanceGeoInformatica10.1007/s10707-021-00438-xOnline publication date: 26-Jun-2021
    • (2020)Discovery of contrast corridors from trajectory data in heterogeneous dynamic cellular networks2020 International Joint Conference on Neural Networks (IJCNN)10.1109/IJCNN48605.2020.9207060(1-8)Online publication date: Jul-2020
    • (2019)Inferring Semantically Enriched Representative TrajectoriesProceedings of the 1st ACM SIGSPATIAL International Workshop on Computing with Multifaceted Movement Data10.1145/3356392.3365220(1-4)Online publication date: 5-Nov-2019
    • (2018)Subtrajectory ClusteringProceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems10.1145/3196959.3196972(75-87)Online publication date: 27-May-2018
    • (2018)ComNSenseProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/31917332:1(1-26)Online publication date: 26-Mar-2018
    • (2018)Approximate and Sublinear Spatial Queries for Large-Scale Vehicle NetworksIEEE Transactions on Vehicular Technology10.1109/TVT.2017.276174567:2(1561-1569)Online publication date: Feb-2018
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media