[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2461466.2461488acmconferencesArticle/Chapter ViewAbstractPublication PagesicmrConference Proceedingsconference-collections
research-article

Fast nonrigid 3D retrieval using modal space transform

Published: 16 April 2013 Publication History

Abstract

Nonrigid or deformable 3D objects are common in many application domains. Retrieval of such objects in large databases based on shape similarity is still a challenging problem. In this paper, we first analyze the advantages of functional operators, and further propose a framework to design novel shape signatures for encoding nonrigid object structures. Our approach constructs a context-aware integral kernel operator on a manifold, then applies modal analysis to map this operator into a low-frequency functional representation, called fast functional transform, and finally computes its spectrum as the shape signature. Our method is fast, isometry-invariant, discriminative, and numerically stable with respect to multiple types of perturbations.

References

[1]
A.Y. Alfakih. On the eigenvalues of euclidean distance matrices. Computational and Applied Mathematics, 27(3):237--250, 2008.
[2]
W.E. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quart. Appl. Math, 9(1):17--29, 1951.
[3]
M. Attene and B. Falcidieno. Remesh: An interactive environment to edit and repair triangle meshes. In Shape Modeling and Applications, 2006. SMI 2006. IEEE International Conference on, pages 41--41. IEEE, 2006.
[4]
A.M. Bronstein, M.M. Bronstein, L.J. Guibas, and M. Ovsjanikov. Shape google: geometric words and expressions for invariant shape retrieval. ACM Transactions on Graphics (TOG), 30(1):1, 2011.
[5]
A.M. Bronstein, M.M. Bronstein, R. Kimmel, M. Mahmoudi, and G. Sapiro. A gromov-hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. International Journal of Computer Vision, 89(2):266--286, 2010.
[6]
Michael Bronstein and Iasonas Kokkinos. Scale-invariance in local heat kernel descriptors without scale selection and normalization, 2009.
[7]
P. Cignoni, M. Corsini, and G. Ranzuglia. Meshlab: an open-source 3d mesh processing system. ERCIM News, 73:45--46, 2008.
[8]
A. Elad and R. Kimmel. Bending invariant representations for surfaces. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, volume 1, pages I--168. IEEE, 2001.
[9]
Z. Lian, A. Godil, B. Bustos, M. Daoudi, J. Hermans, S. Kawamura, Y. Kurita, G. Lavoué, H. V. Nguyen, R. Ohbuchi, Y. Ohkita, Y. Ohishi, F. Porikli, M. Reuter, I. Sipiran, D. Smeets, P. Suetens, H. Tabia, and D. Vandermeulen. SHREC '11 Track: Shape Retrieval on Non-rigid 3D Watertight Meshes. pages 79--88.
[10]
Y. Lipman, R. M. Rustamov, and T. A. Funkhouser. Biharmonic distance. ACM Transactions on Graphics, ACM 0730-0301//10-ART, 2007.
[11]
D.G. Lowe. Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60(2):91--110, 2004.
[12]
C. Maes, T. Fabry, J. Keustermans, D. Smeets, P. Suetens, and D. Vandermeulen. Feature detection on 3d face surfaces for pose normalisation and recognition. In Biometrics: Theory Applications and Systems (BTAS), 2010 Fourth IEEE International Conference on, pages 1--6. IEEE, 2010.
[13]
M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher, and L. Guibas. Functional maps: A flexible representation of maps between shapes. ACM Transactions on Graphics (TOG), 31(4):30, 2012.
[14]
M. Ovsjanikov, A.M. Bronstein, M.M. Bronstein, and L.J. Guibas. Shape google: a computer vision approach to isometry invariant shape retrieval. In Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on, pages 320--327. IEEE, 2009.
[15]
Gabriel Peyré and Laurent D. Cohen. Heuristically driven front propagation for fast geodesic extraction. Intl. Journal for Computational Vision and Biomechanics 1(1), pages 55--67, 2009.
[16]
Martin Reuter. Hierarchical shape segmentation and registration via topological features of laplace-beltrami eigenfunctions. International Journal of Computer Vision, 89(2):287--308, 2010.
[17]
Martin Reuter, Franz-Erich Wolter, and Niklas Peinecke. Laplace-beltrami spectra as 'shape-DNA' of surfaces and solids. Computer-Aided Design, 38(4):342--366, 2006.
[18]
R.M. Rustamov. Laplace-beltrami eigenfunctions for deformation invariant shape representation. In Proceedings of the fifth Eurographics symposium on Geometry processing, pages 225--233. Eurographics Association, 2007.
[19]
Philip Shilane, Patrick Min, Michael M. Kazhdan, and Thomas A. Funkhouser. The princeton shape benchmark. In Shape Modeling International, pages 167--178. IEEE Computer Society, 2004.
[20]
Dirk Smeets, Thomas Fabry, Jeroen Hermans, Dirk Vandermeulen, and Paul Suetens. Isometric deformation modelling for object recognition. CAIP 2009, LNCS 5702, pages 757--765, 2009.
[21]
G. W. Stewart. A Krylov-Schur algorithm for large eigenproblems. SIAM Journal on Matrix Analysis and Applications, 23(3):601--614, 2001.
[22]
Jian Sun, Maks Ovsjanikov, and Leonidas J. Guibas. A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum, 28(5):1383--1392, 2009.
[23]
H. Sundar, D. Silver, N. Gagvani, and S. Dickinson. Skeleton based shape matching and retrieval. In Shape Modeling International, 2003, pages 130--139. IEEE, 2003.
[24]
Vitaly Surazhsky, Tatiana Surazhsky, Danil Kirsanov, Steven J. Gortler, and Hugues Hoppe. Fast exact and approximate geodesics on meshes. ACM Transactions on Graphics, 24(3):553--560, July 2005.
[25]
A. Zaharescu, E. Boyer, K. Varanasi, and R. Horaud. Surface feature detection and description with applications to mesh matching. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 373--380. Ieee, 2009.
[26]
O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu. The Finite Element Method-Its Basis and Fundamentals, volume 1. Elsevier Butterworth-Heinemann, Amsterdam, London 2005.

Cited By

View all
  • (2018)Deep Nonlinear Metric Learning for 3-D Shape RetrievalIEEE Transactions on Cybernetics10.1109/TCYB.2016.263892448:1(412-422)Online publication date: Jan-2018
  • (2017)Deep Multimetric Learning for Shape-Based 3D Model RetrievalIEEE Transactions on Multimedia10.1109/TMM.2017.269820019:11(2463-2474)Online publication date: Nov-2017
  • (2017)Progressive Shape-Distribution-Encoder for Learning 3D Shape RepresentationIEEE Transactions on Image Processing10.1109/TIP.2017.265140826:3(1231-1242)Online publication date: 1-Mar-2017
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
ICMR '13: Proceedings of the 3rd ACM conference on International conference on multimedia retrieval
April 2013
362 pages
ISBN:9781450320337
DOI:10.1145/2461466
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 16 April 2013

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. biharmonic distance
  2. content-based object retrieval
  3. functional map
  4. shape retrieval
  5. shape signature

Qualifiers

  • Research-article

Conference

ICMR'13
Sponsor:

Acceptance Rates

ICMR '13 Paper Acceptance Rate 38 of 96 submissions, 40%;
Overall Acceptance Rate 254 of 830 submissions, 31%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)2
  • Downloads (Last 6 weeks)0
Reflects downloads up to 08 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2018)Deep Nonlinear Metric Learning for 3-D Shape RetrievalIEEE Transactions on Cybernetics10.1109/TCYB.2016.263892448:1(412-422)Online publication date: Jan-2018
  • (2017)Deep Multimetric Learning for Shape-Based 3D Model RetrievalIEEE Transactions on Multimedia10.1109/TMM.2017.269820019:11(2463-2474)Online publication date: Nov-2017
  • (2017)Progressive Shape-Distribution-Encoder for Learning 3D Shape RepresentationIEEE Transactions on Image Processing10.1109/TIP.2017.265140826:3(1231-1242)Online publication date: 1-Mar-2017
  • (2017)A non-rigid 3D model retrieval method based on scale-invariant heat kernel signature featuresMultimedia Tools and Applications10.1007/s11042-016-3606-976:7(10207-10230)Online publication date: 1-Apr-2017
  • (2016)Fast and exact discrete geodesic computation based on triangle-oriented wavefront propagationACM Transactions on Graphics10.1145/2897824.292593035:4(1-13)Online publication date: 11-Jul-2016
  • (2016)Shape Retrieval of Non-rigid 3D Human ModelsInternational Journal of Computer Vision10.1007/s11263-016-0903-8120:2(169-193)Online publication date: 1-Nov-2016
  • (2016)A fast modal space transform for robust nonrigid shape retrievalThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-015-1071-532:5(553-568)Online publication date: 1-May-2016
  • (2015)Progressive Shape-Distribution-Encoder for 3D Shape RetrievalProceedings of the 23rd ACM international conference on Multimedia10.1145/2733373.2806308(1167-1170)Online publication date: 13-Oct-2015
  • (2015)A statistical model of Riemannian metric variation for deformable shape analysis2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR.2015.7298726(1219-1228)Online publication date: Jun-2015
  • (2015)Non-parametric Spectral Model for Shape RetrievalProceedings of the 2015 International Conference on 3D Vision10.1109/3DV.2015.46(344-352)Online publication date: 19-Oct-2015
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media