[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2332432.2332474acmconferencesArticle/Chapter ViewAbstractPublication PagespodcConference Proceedingsconference-collections
abstract

Brief announcement: maintaining large dense subgraphs on dynamic networks

Published: 16 July 2012 Publication History

Abstract

In distributed networks, some groups of nodes may have more inter-connections, perhaps due to their larger bandwidth availability or communication requirements. In many scenarios, it may be useful for the nodes to know if they form part of a dense subgraph, e.g., such a dense subgraph could form a high bandwidth backbone for the network. In this work, we address the problem of self-awareness of nodes in a dynamic network with regards to graph density, i.e., we give distributed algorithms for maintaining dense subgraphs (subgraphs that the member nodes are aware of). The only knowledge that the nodes need is that of the dynamic diameter D, i.e., the maximum number of rounds it takes for a message to traverse the dynamic network. For our work, we consider a model where the number of nodes are fixed, but a powerful adversary can add or remove a limited number of edges from the network at each time step. The communication is by broadcast only and follows the CONGEST model in the sense that only messages of O(log n) size are permitted, where n is the number of nodes in the network.
Our algorithms are continuously executed on the network, and at any time (after some initialization) each node will be aware if it is part (or not) of a particular dense subgraph. We give algorithms that approximate both the densest subgraph, i.e., the subgraph of the highest density in the network, and the at-least-k-densest subgraph (for a given parameter k), i.e., the densest subgraph of size at least k. We give a (2 + ε)-approximation algorithm for the densest subgraph problem. The at-least-k-densest subgraph is known to be NP-hard for the general case in the centralized setting and the best known algorithm gives a 2-approximation. We present an algorithm that maintains a (3+ε)-approximation in our distributed, dynamic setting. Our algorithms run in O(Dlog1+ε n) time.

References

[1]
Reid Andersen and Kumar Chellapilla. Finding dense subgraphs with size bounds. In WAW '09: Proceedings of the 6th International Workshop on Algorithms and Models for the Web-Graph, pages 25--37, 2009.
[2]
Samir Khuller and Barna Saha. On finding dense subgraphs. In ICALP (1), pages 597--608, 2009.
[3]
Fabian Kuhn, Rotem Oshman, and Yoram Moses. Coordinated consensus in dynamic networks. In PODC, pages 1--10, 2011.
[4]
David Peleg. Distributed computing: a locality-sensitive approach. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000.
[5]
Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness of distributed approximation. In STOC, pages 363--372, 2011.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
PODC '12: Proceedings of the 2012 ACM symposium on Principles of distributed computing
July 2012
410 pages
ISBN:9781450314503
DOI:10.1145/2332432

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 16 July 2012

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. aggregation
  2. approximate
  3. distributed
  4. dynamic networks
  5. estimation
  6. graph density
  7. probablistic
  8. subgraph density

Qualifiers

  • Abstract

Conference

PODC '12
Sponsor:

Acceptance Rates

Overall Acceptance Rate 740 of 2,477 submissions, 30%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 106
    Total Downloads
  • Downloads (Last 12 months)2
  • Downloads (Last 6 weeks)1
Reflects downloads up to 11 Dec 2024

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media