[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Dynamic Landmarking for Surface Feature Identification and Change Detection

Published: 01 May 2012 Publication History

Abstract

Given the large volume of images being sent back from remote spacecraft, there is a need for automated analysis techniques that can quickly identify interesting features in those images. Feature identification in individual images and automated change detection in multiple images of the same target are valuable for scientific studies and can inform subsequent target selection. We introduce a new approach to orbital image analysis called dynamic landmarking. It focuses on the identification and comparison of visually salient features in images. We have evaluated this approach on images collected by five Mars orbiters. These evaluations were motivated by three scientific goals: to study fresh impact craters, dust devil tracks, and dark slope streaks on Mars. In the process we also detected a different kind of surface change that may indicate seasonally exposed bedforms. These experiences also point the way to how this approach could be used in an onboard setting to analyze and prioritize data as it is collected.

References

[1]
Achanta, R., Hemami, S., Estrada, F., and Süsstrunk, S. 2009. Frequency-tuned salient region detection. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, Los Alamitos, CA, 1597--1604.
[2]
Aharonson, O., Schörghofer, N., and Gerstell, M. 2003. Slope streak formation and dust deposition rates on Mars. J. Geophysical Res. 108, E12, 5138.
[3]
Balme, M., Whelley, P., and Greeley, R. 2003. Mars: Dust devil track survey in Argyre Planitia and Hellas Basin. J. Geophysical Res. 108, E8, 5086.
[4]
Bandeira, L., Saraiva, J., and Pina, P. 2007. Development of a methodology for automated crater detection on planetary images. In Pattern Recognition and Image Analysis, Lecture Notes in Computer Science, vol. 4477, Springer Berlin, 193--200.
[5]
Burl, M. C., Stough, T., Colwell, W., Bierhaus, E. B., Merline, W. J., and Chapman, C. 2001. Automated detection of craters and other geological features. In Proceedings of the International Symposium on Artificial Intelligence, Robotics, and Automation in Space.
[6]
Byrne, S., Dundas, C. M., Kennedy, M. R., Mellon, M. T., McEwen, A. S., Cull, S. C., Daubar, I. J., Shean, D. E., Seelos, K. D., Murchie, S. L., Cantor, B. A., Arvidson, R. E., Edgett, K., Reufer, A., Thomas, N., Harrison, T. N., Posiolova, L. V., and Seelos, F. P. 2009. Distribution of mid-latitude ground ice on Mars from new impact craters. Science 325, 5948, 1674--1676.
[7]
Castaño, R., Estlin, T., Anderson, R. C., Gaines, D. M., Castaño, A., Bornstein, B., Chouinard, C., and Judd, M. 2007. Oasis: Onboard autonomous science investigation system for opportunistic rover science. J. Field Robotics 24, 379--397.
[8]
Castaño, A., Fukunaga, A., Biesiadecki, J., Neakrase, L., Whelley, P., Greeley, R., Lemmon, M., Castaño, R., and Chien, C. 2008. Automatic detection of dust devils and clouds on Mars. Machine Vision Appl. 19, 5--6, 467--482.
[9]
Chen, H.-M. 2003. Mutual information-based image registration for remote sensing data. Int. J. Remote Sens. 24, 18, 3701--3706.
[10]
Christensen, P. R., Jakosky, B. M., Kieffer, H. H., Malin, M. C., McSween, H. Y., Nealson, K., Mehall, G. L., Silverman, S. H., Ferry, S., and Caplinger, M. 2004. The thermal emission imaging system (THEMIS) for the Mars 2001 Odyssey mission. Space Sci. Rev. 110, 1--2, 85--130.
[11]
Cortes, C. and Vapnik, V. 1995. Support-vector network. Mach. Learn. 20, 273--297.
[12]
Ding, W., Stepinski, T. F., Bandeira, L., Vilalta, R., Wu, Y., Lu, Z., and Cao, T. 2010. Automatic detection of craters in planetary images: Fan embedded framework using feature selection and boosting. In Proceedings of the 19th ACM International Conference on Information and Knowledge Management. 749--758.
[13]
Edmonds, J. and Karp, R. M. 1972. Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19, 2, 248--264.
[14]
Elazary, L. and Itti, L. 2008. Interesting objects are visually salient. J. Vision 8, 3, 1--15.
[15]
Fischler, M. A. and Bolles, R. C. 1981. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM 24, 381--395.
[16]
Florez-Méndez, A. 2003. Crater marking and classification using computer vision. In Pattern Recognition and Image Analysis. Lecture Notes in Computer Science, vol. 2905, Springer Berlin, 79--86.
[17]
Geissler, P. E. 2005. Three decades of Martian surface changes. J. Geophysical Res. 110, E2, E02001.
[18]
Gilles, S. 1998. Robust description and matching of images. Ph.D. University of Oxford.
[19]
Graciano, A. B. V., Cesar Jr., R. M., and Bloch, I. 2003. Inexact graph matching for facial feature segmentation and recognition in video sequences: Results on face tracking. In Proceedings of the Iberoamercan Congress on Pattern Recognition (CIARP’03). Lecture Notes in Computer Science, Springer, Berlin, 71--78.
[20]
Greeley, R., Waller, D. A., Cabrol, N. A., Landis, G. A., Lemmon, M. T., Neakrase, L. D. V., Hoffer, M. P., Thompson, S. D., and Whelley, P. L. 2010. Gusev Crater, Mars: Observations of three dust devil seasons. J. Geophysical Res 115, E00F02.
[21]
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. 2009. The WEKA data mining software: An update. ACM SIGKDD Explor. Newsl. 11, 1, 10--18.
[22]
Harris, C. and Stephens, M. 1988. A combined corner and edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 29, 12, 2247--2253.
[23]
Itti, L. and Koch, C. 2000. A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Res. 40, 1489--1506.
[24]
Itti, L. and Koch, C. 2001. Feature combination strategies for saliency-based visual attention systems. J. Electron. Imaging 10, 1, 161--169.
[25]
Kadir, T. and Brady, M. 2001. Saliency, scale and image description. Int. J. Comput. Vision 45, 2, 83--105.
[26]
King, C., Schorghofer, N., and Wagstaff, K. L. 2010. Martian slope streaks form sporadically throughout the year. In Proceedings of the 41st Lunar and Planetary Science Conference.
[27]
Koch, C. and Ullman, S. 1985. Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiol. 4, 219--227.
[28]
Kuhn, H. W. 1955. The Hungarian method for the assignment problem. Naval Res. Logistic Quart. 2, 83--97.
[29]
Kullback, S. 1959. Information Theory and Statistics. John Wiley and Sons, New York, NY.
[30]
Lee, W.-T. and Chen, H.-T. 2009. Histogram-based interest point detectors. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, Los Alamitos, CA, 1590--1596.
[31]
Lowe, D. 2004. Distinctive image features from scale invariant keypoints. Int. J. Comput. Vision 2, 60, 91--110.
[32]
Malin, M. C., Bell III, J. F., Cantor, B. A., Caplinger, M. A., Calvin, W. M., Clancy, R. T., Edgett, K. S., Edwards, L., Haberle, R. M., James, P. B., Lee, S. W., Ravine, M. A., Thomas, P. C., and Wolff, M. J. 2007. Context camera investigation on board the Mars Reconnaissance Orbiter. J. Geophysical Res. 112, E05S04.
[33]
Malin, M. C. and Edgett, K. S. 2001. Mars global surveyor Mars orbiter camera: Interplanetary cruise through primary mission. J. Geophysical Res. 106, E10, 23429--23570.
[34]
Malin, M. C., Edgett, K. S., Posiolova, L. V., McColley, S. M., and Dobrea, E. Z. N. 2006. Present-day impact cratering rate and contemporary gully activity on Mars. Science 314, 5805, 1573--1577.
[35]
McEwen, A., Eliason, E. M., Bergstrom, J. W., Bridges, N. T., Hansen, C. J., Delamere, W. A., Grant, J. A., Gulick, V. C., Herkenhoff, K. E., Keszthelyi, L., Kirk, R. L., Mellon, M. T., Squyres, S. W., Thomas, N., and Weitz, C. M. 2007. Mars reconnaissance orbiter high resolution imaging science experiment (HiRISE). J. Geophysical Res. 112, E05S02.
[36]
Molloy, I. and Stepinski, T. F. 2007. Automatic mapping of valley networks on Mars. Comput. Geosci. 33, 6, 728--738.
[37]
Morabito, L. A., Synnott, S. P., Kupferman, P. N., and Collins, S. A. 1979. Discovery of currently active extraterrestrial volcanism. Science 204, 4396, 972.
[38]
Morris, R. V., Ruff, S. W., Gellert, R., Ming, D. W., Arvidson, R. E., Clark, B. C., Golden, D. C., Siebach, K., Klingelhöfer, G., Schröder, C., Fleischer, I., Yen, A. S., and Squyres, S. W. 2010. Identification of carbonate-rich outcrops on Mars by the Spirit rover. Science 329, 5990, 421--424.
[39]
Neukum, G. and Jaumann, R. 2004. Mars Express: The Scientific Payload. ESA Publications Division, Noordwijk, Netherlands, Chapter HRSC: The High Resolution Stereo Camera of Mars Express, 17--35.
[40]
Phillips, C. B., Burr, D. M., and Beyer, R. A. 2007. Mass movement within a slope streak on Mars. Geophysical Res. Letters 34, L21202.
[41]
Phillips, C. B., McEwen, A. S., Hoppa, G. V., Geissler, P. E., Greeley, R., Klemaszewski, J., Simonelli, D. P., Sullivan, R., and the Galileo SSI Team. 1998. Change detection on Europa and Io from Voyager and Galileo images. In Proceedings of the 29th Lunar and Planetary Science Conference.
[42]
Porco, C. C., Helfenstein, P., Thomas, P. C., Ingersoll, A. P., Wisdom, J., West, R., Neukum, G., Denk, T., Wagner, R., Roatsch, T., Kieffer, S., Turtle, E., McEwen, A., Johnson, T. V., Rathbun, J., Veverka, J., Wilson, D., Perry, J., Spitale, J., Brahic, A., Burns, J. A., Delgenio, A. D., Dones, L., Murray, C. D., and Squyres, S. 2006. Cassini observes the active south pole of Enceladus. Science 311, 5766, 1393--1401.
[43]
Quinlan, J. R. 1993. C4.5: Programs for Machine Learning. Morgan Kauffman, San Francisco, CA.
[44]
Radke, R. J., Andra, S., Al-Kofahi, O., and Roysam, B. 2005. Image change detection algorithms: A systematic survey. IEEE Trans. Image Process. 14, 3, 294--307.
[45]
Riesen, K., Neuhaus, M., and Bunke, H. 2007. Bipartite graph matching for computing the edit distance of graphs. In Graph-Based Representations in Pattern Recognition, F. Escolano and M. Vento, Eds., Lecture Notes in Computer Science, vol. 4538, Springer Berlin, 1--12.
[46]
Rumelhart, D. E., Hinston, G. E., and Williams, R. J. 1986. Learning representations by back-propagating errors. Nature 323, 533--536.
[47]
Sagan, C., Veverka, J., Fox, P., Dubisch, R., Lederberg, J., Levinthal, E., Quam, L., Tucker, R., Pollack, J. B., and Smith, B. A. 1972. Variable features on Mars: Preliminary Mariner 9 television results. Icarus 17, 2, 346--372.
[48]
Sawabe, Y., Matsunaga, T., and Rokugawa, S. 2006. Automated detection and classification of lunar craters using multiple approaches. Adv. Space Res. 37, 1, 21--27.
[49]
Schmidt, M. E., Ruff, S. W., McCoy, T. J., Farrand, W. H., Johnson, J. R., Gellert, R., Ming, D. W., Morris, R. V., Cabrol, N., Lewis, K. W., and Schröder, C. 2008. Hydrothermal origin of halogens at Home Plate, Gusev Crater. J. Geophysical Res. 113, E06S12.
[50]
Schörghofer, N., Aharonson, O., Gerstell, M. F., and Tatsumi, L. 2007. Three decades of slope streak activity on Mars. Icarus 191, 132--140.
[51]
Shannon, C. E. 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379--423, 623--656.
[52]
Sullivan, R., Thomas, P., Veverka, J., Malin, M., and Edgett, K. S. 2001. Mass movement slope streaks imaged by the Mars orbiter camera. J. Geophysical Res. 106, E10, 23607.
[53]
Toth, D., Aach, T., and Metzler, V. 2000. Illumination-invariant change detection. In Proceedings of the 4th IEEE Southwest Symposium on Image Analysis and Interpretation. 3--7.
[54]
Viola, P. and Williams, W. 1997. Alignment by maximization of mutual information. Int. J. Comput. Vision 2, 24, 137--154.
[55]
Whelley, P. L. and Greeley, R. 2008. The distribution of dust devil activity on Mars. J. Geophysical Res. 113.

Cited By

View all
  • (2024)Automatic Change Detection of Planetary Striped Landform on Mars SurfaceIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing10.1109/JSTARS.2024.337101517(5884-5898)Online publication date: 2024
  • (2020)PlaNet: A Neural Network for Detecting Transverse Aeolian Ridges on MarsRemote Sensing10.3390/rs1221360712:21(3607)Online publication date: 3-Nov-2020
  • (2020)Barefoot Rover: a Sensor-Embedded Rover Wheel Demonstrating In-Situ Engineering and Science Extractions using Machine Learning2020 IEEE International Conference on Robotics and Automation (ICRA)10.1109/ICRA40945.2020.9197500(6000-6006)Online publication date: May-2020
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Intelligent Systems and Technology
ACM Transactions on Intelligent Systems and Technology  Volume 3, Issue 3
May 2012
384 pages
ISSN:2157-6904
EISSN:2157-6912
DOI:10.1145/2168752
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 May 2012
Accepted: 01 April 2011
Revised: 01 April 2011
Received: 01 February 2011
Published in TIST Volume 3, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Change detection
  2. image analysis
  3. salience

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)14
  • Downloads (Last 6 weeks)2
Reflects downloads up to 19 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Automatic Change Detection of Planetary Striped Landform on Mars SurfaceIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing10.1109/JSTARS.2024.337101517(5884-5898)Online publication date: 2024
  • (2020)PlaNet: A Neural Network for Detecting Transverse Aeolian Ridges on MarsRemote Sensing10.3390/rs1221360712:21(3607)Online publication date: 3-Nov-2020
  • (2020)Barefoot Rover: a Sensor-Embedded Rover Wheel Demonstrating In-Situ Engineering and Science Extractions using Machine Learning2020 IEEE International Conference on Robotics and Automation (ICRA)10.1109/ICRA40945.2020.9197500(6000-6006)Online publication date: May-2020
  • (2020)COSMIC: Content-based Onboard Summarization to Monitor Infrequent Change2020 IEEE Aerospace Conference10.1109/AERO47225.2020.9172337(1-12)Online publication date: Mar-2020
  • (2018)Comparing experts and novices in Martian surface feature change detection and identificationInternational Journal of Applied Earth Observation and Geoinformation10.1016/j.jag.2017.05.01464(354-364)Online publication date: Feb-2018
  • (2017)Onboard Autonomy on the Intelligent Payload Experiment CubeSat MissionJournal of Aerospace Information Systems10.2514/1.I01038614:6(307-315)Online publication date: Jun-2017
  • (2017)Automatic detection of Martian dark slope streaks by machine learning using HiRISE imagesISPRS Journal of Photogrammetry and Remote Sensing10.1016/j.isprsjprs.2017.04.014129(12-20)Online publication date: Jul-2017
  • (2017)Automated detection of new impact sites on Martian surface from HiRISE imagesAdvances in Space Research10.1016/j.asr.2017.06.04460:7(1557-1569)Online publication date: Oct-2017
  • (2015)A Hybrid Background Subtraction Method with Background and Foreground Candidates DetectionACM Transactions on Intelligent Systems and Technology10.1145/27464097:1(1-14)Online publication date: 1-Oct-2015
  • (2015)Autonomy for remote sensing — Experiences from the IPEX CubeSat2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)10.1109/IGARSS.2015.7327033(5308-5311)Online publication date: Jul-2015
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media