[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Coons BVH for freeform geometric models

Published: 12 December 2011 Publication History

Abstract

We present a compact representation for the bounding volume hierarchy (BVH) of freeform NURBS surfaces using Coons patches. Following the Coons construction, each subpatch can be bounded very efficiently using the bilinear surface determined by the four corners. The BVH of freeform surfaces is represented as a hierarchy of Coons patch approximation until the difference is reduced to within a given error bound. Each leaf node contains a single Coons patch, where a detailed BVH for the patch can be represented very compactly using two lists (containing curve approximation errors) of length proportional only to the height of the BVH. We demonstrate the effectiveness of our compact BVH representation using several experimental results from real-time applications in collision detection and minimum distance computation for freeform models.

Supplementary Material

JPG File (a169-kim.jpg)
AVI File (a169-kim.avi)

References

[1]
Akenine-Möller, T., Hains, E., Hoffman, N.: Real-Time Rendering, A. K. Peters, Natick, MA, 3rd Ed., 2008.
[2]
Cohen, E., Riesenfeld, R., and Elber, G.: Geometric Modeling with Splines: An Introduction, A. K. Peters, Natick, MA, 2001.
[3]
Coons, S.: Surfaces for Computer-Aided Design, Technical report, MIT, 1964. Available as AD 663 504 from the National Technical Information Service, Springfield, VA, 22161.
[4]
Farin, G.: Curves and Surfaces for CAGD, 5th Ed., MorganKaufmann, San Francisco, CA, 2002.
[5]
Gilbert, E., Johnson, D., Keerthi, S.: A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE Trans. Robot. Automat. 4, 2, 193--203, 1988.
[6]
Gottschalk, S., Lin, M., Manocha, D.: OBB-tree: a hierarchical structure for rapid interference detection. Computer Graphics (SIGGRAPH 1996), 171--180, 1996.
[7]
Govindaraju, N., Redon, S., Lin, M., Manocha, D.: Cullide: interactive collision detection between complex models in large environments using graphics hardware. Proc. Eurographics/SIGGRAPH Graphics Hardware Workshop, pp. 25--32, 2003.
[8]
Guendelman, E., Bridson, R., Fedkiw, R.: Nonconvex Rigid Bodies with Stacking. Proc. of SIGGRAPH 03, Computer Graphics Annual Conference Series, 2003.
[9]
IRIT 10.0 User's Manual, Technion. http://www.cs.technion.ac.il/~irit.
[10]
James, D., Pai, D.: Bd-tree: output-sensitive collision detection for reduced deformable models. ACM Trans. on Graphics 23, 3, 393--398, 2004.
[11]
Johnson, D., Cohen, E.: A framework for efficient minimum distance computations. IEEE Int'l Conf. on Robotics and Automation, 3678--3684, 1998.
[12]
Kim, D., Heo, J.-P., Huh, J., Kim, J., Yoon, S.-E.: HPCCD: Hybrid parallel continuous collision detection using CPUs and GPUs. (Proc. of Pacific Graphics 2009), Computer Graphics Forum 28, 7, 1791--1800, 2009.
[13]
Krishnan, S., Gopi, M., Lin, M., Manocha, D., Pattekar, A.: Rapid and accurate contact determination between spline models using ShellTrees. Computer Graphics Forum 17, 3, 315--326, 1998.
[14]
Larsen, E., Gottschalk, S., Lin, M. C., Manocha, D.: Fast proximity queries using swept sphere volumes. Technical Report TR99-018, Dept. of Computer Science, UNC, 1999.
[15]
Lin, M. C., Gottschalk, S.: Collision detection between geometric models: A survey. Proc. of IMA Conference on Mathematics of Surfaces, pp. 37--56, 1998.
[16]
Lin, M. C., Manocha, D.: Collision and proximity queries. Handbook of Discrete and Computational Geometry, 2nd Ed., J. E. Goodman and J. O'Rourke, Eds., Chapman & Hall/CRC, pp. 787--807, 2004.
[17]
Redon, S., Kim, Y., Lin, M., Manocha, D.: Fast continuous collision detection for articulated models. Proc. ACM Symp. on Solid Modeling and Applications, pp. 145--156, 2004.
[18]
Samet, H.: Foundations of Multidimensional and Metric Data Structures, Morgan Kaufmann, San Francisco, CA, 2006.
[19]
Tang, M., Curtis, S., Yoon, S.-E., Manocha, D.: Interactive continuous collision detection between deformable models using connectivity-based culling. SPM '08: Proc. of ACM Symp. on Solid and Physical Modeling, Stony Brook, New York, pp. 25--36, 2008.
[20]
Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann, G., Raghupathi, L., Fuhrmann, A., Cani, M.-P., Faure, F., Magnenat-Thalmann, N., Strasser, W., Volino, P.: Collision detection for deformable objects. Computer Graphics Forum 24, 1, 61--81, 2005.
[21]
van den Bergen, G.: A fast and robust GJK implementation for collision detection of convex objects. Journal of Graphics Tools 4, 2, 7--25, 1999.
[22]
Yoon, S.-E., Manocha, D.: Cache-efficient layouts of bounding volume hierarchies. Computer Graphics Forum 25, 3, 507--516, 2006.
[23]
Zhang, X., Kim, Y.: Interactive collision detection for deformable models using streaming AABBs. IEEE Trans. on Visualization and Computer Graphics 13, 2, 318--329, 2007.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 30, Issue 6
December 2011
678 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2070781
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 12 December 2011
Published in TOG Volume 30, Issue 6

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Coons patch
  2. NURBS
  3. bilinear surface
  4. bounding volume hierarchy (BVH)
  5. collision detection
  6. freeform surface
  7. minimum distance computation
  8. offset
  9. tetrahedron

Qualifiers

  • Research-article

Funding Sources

  • Israeli Ministry of Science
  • NRF Research

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)7
  • Downloads (Last 6 weeks)2
Reflects downloads up to 12 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2020)Inter-surface maps via constant-curvature metricsACM Transactions on Graphics10.1145/3386569.339239939:4Online publication date: 12-Aug-2020
  • (2018)LightDBProceedings of the VLDB Endowment10.14778/3231751.323176811:10(1192-1205)Online publication date: 1-Jun-2018
  • (2018)Fast and robust Hausdorff distance computation from triangle mesh to quad mesh in near-zero casesComputer Aided Geometric Design10.1016/j.cagd.2018.03.01762(91-103)Online publication date: May-2018
  • (2018)Efficiently consistent affinity propagation for 3D shapes co-segmentationThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-018-1538-234:6-8(997-1008)Online publication date: 1-Jun-2018
  • (2017)An efficient approach to directly compute the exact Hausdorff distance for 3D point setsIntegrated Computer-Aided Engineering10.3233/ICA-17054424:3(261-277)Online publication date: 21-Jul-2017
  • (2017)Robust eXtended finite elements for complex cutting of deformablesACM Transactions on Graphics10.1145/3072959.307366636:4(1-13)Online publication date: 20-Jul-2017
  • (2017)Consistent Partial Matching of Shape Collections via Sparse ModelingComputer Graphics Forum10.1111/cgf.1279636:1(209-221)Online publication date: 1-Jan-2017
  • (2017)Data-Driven Shape Analysis and ProcessingComputer Graphics Forum10.1111/cgf.1279036:1(101-132)Online publication date: 1-Jan-2017
  • (2016)Compact Modeling and Plausible Deformation of Human Lung Anatomy with Smooth SurfacesProceedings of the 29th International Conference on Computer Animation and Social Agents10.1145/2915926.2915938(21-28)Online publication date: 23-May-2016
  • (2016)Point registration via efficient convex relaxationACM Transactions on Graphics10.1145/2897824.292591335:4(1-12)Online publication date: 11-Jul-2016
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media