[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/1924559.1924621acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicvgipConference Proceedingsconference-collections
research-article

A heuristic algorithm for video scene detection using shot cluster sequence analysis

Published: 12 December 2010 Publication History

Abstract

In this paper, we present a novel scheme for segmenting video data into scenes. Based on visual similarity, the shots are first classified into clusters using modified k-means algorithm. Number of optimal clusters is decided using cluster validity analysis based on Davies-Bouldin index. Each shot is assigned a tag denoting the cluster it belongs to. Thus, the video data is represented by a sequence of cluster tags. The sequence is then analyzed by introducing the concept of stable and quasi-stable state. The elements of the sequence are merged into states and isolated elements are linked with the states to generate the scenes. The scheme is free from the dependency on critical parameters and capable of handling different types of scenes.

References

[1]
Y. Ariki, M. Kumano, and K. Tsukada. Highlight scene extraction in real time from baseball live video. In Proc. ACM Intl. Workshop on Multimedia Retrieval, pages 209--214, 2003.
[2]
P. Bouthemy, C. Garcia, R. Ronfard, G. Tziritas, E. Veneau, and D. Zugaj. Scene segmentation and image feature extraction for video indexing and retrieval. In Proc. Visual, pages 245--252, 1999.
[3]
V. T. Chasanis, A. C. Likas, and N. P. Galatsanos. Scene detection in videos using shot clustering and sequence alignment. IEEE Trans. on Multimedia, 11(1):89--100, 2009.
[4]
J. M. Corridoni and A. D. Bimbo. Structured representation and automatic indexing of movie information content. Pattern Recognition, 31(12):2027--2045, 1998.
[5]
D. L. Davies and D. W. Bouldin. Cluster separation measure. IEEE Trans. on PAMI, 1(2):224--227, 1979.
[6]
A. Hanjalic, R. L. Lagendijk, and J. Biemond. Automated high-level movie segmentation for advanced video-retrieval. IEEE Trans. on CSVT, 9(4):580--588, 1999.
[7]
R. M. Haralick, K. Shanmugam, and I. Dinstein. Textural features for images classification. IEEE Trans. on Syst., Man and Cybern., SMC-3:610--621, 1973.
[8]
J. Huang, Z. Liu, and Y. Wang. Integration of audio and visual information for content-based video segmentation. In Proc. ICIP, pages 526--530, 1998.
[9]
H. B. Kang. A hierarchical approach to scene segmentation. In Proc. IEEE Workshop on Content-Based Access of Image and Video Libraries, pages 65--71, 2001.
[10]
J. R. Kender and B. L. Yeo. Video scene detection via continuous video coherence. In Proc. IEEE Intl. Conf. on CVPR, pages 367--373, 1998.
[11]
F. Kovacs, C. Legany, and A. Babos. Cluster validity measurement techniques. In Proc. Intl. Symposium of Hungarian Researchers on Computational Intelligence, pages 65--71, 2001.
[12]
R. Lienhart, S. Pfeiffer, and W. Effelsberg. Scene determination based on video and audio features. In Proc. Intl. conf. on Multimedia Computing and Systems, pages 685--690, 1999.
[13]
T. Lin, H. J. Zhang, and Q. Y. Shi. Video content representation for shot retrieval and scene extraction. Intl. J. of Image Graph, 1(3):507--526, 2001.
[14]
B. S. Manjunath and W. Y. Ma. Texture features for browsing and retrieval of image data. IEEE Trans. on PAMI, 18:837--842, 1996.
[15]
P. P. Mohanta, S. K. Saha, and B. Chanda. Shot boundary detection using frame transition parameters and edge strength scatter. In Proc. PReMI, pages 641--648, Kolkata, India, 2007.
[16]
P. P. Mohanta, S. K. Saha, and B. Chanda. A novel key-frame detection technique using statistical run test and majority voting. In Proc. ICVGIP, Bhubaneswar, India, 2008.
[17]
W. Qi, H. Jiang, X.-R. Chen, and H.-J. Zhang. Integrating visual, audio and text analysis for news video. In Proc. ICIP, 2000.
[18]
Z. Rasheed and M. Shah. Scene detection in hollywood movies and tv shows. In Proc. CVPR, pages 343--348, 2003.
[19]
Z. Rasheed and M. Shah. Detection and representation of scenes in video. IEEE Trans. on Multimedia, 7(6):1097--1105, 2005.
[20]
Y. Rui, T. S. Huang, and S. Mehrotra. Constructing table-of-content for video. ACM Multimedia Systems, 7(5):359--368, 1999.
[21]
H. Sundaram and S. F. Chang. Video scene segmentation using video and audio features. In Proc. ICME, pages 1145--1148, 2000.
[22]
W. Tavanapong and J. Zhou. Shot clustering techniques for story browsing. IEEE Trans. on Multimedia, 6(4):517--526, 2004.
[23]
M. Yeung and B. L. Yeo. Segmentation of video by clustering and graph analysis. Intl. J. of Computer Vision and Image Understanding, 71(1):94--109, 1998.
[24]
L. Zhao, S.-Q. Yang, and B. Feng. Video scene detection using slide wimdows methobd based on temporal constraint shot similarity. In Proc. ICME, pages 649--652, 2001.
[25]
Y. J. Zhao and T. Wang. Scene segmentation and categorization using ncuts. In Proc. CVPR, pages 343--348, 2007.
[26]
S. Zhu and Y. Liu. Video scene segmentation and semantic representation using a novel scheme. Multimedia Tools and Application, 42:183--205, 2009.
[27]
X. Zhu, A. K. Elmagarmid, X. Xue, L. Wu, and A. C. Catlin. Insight video: Toward hierarchical video content organization for efficient browsing, summarization and retrieval. IEEE Trans. on Multimedia, 7(4), 2005.

Cited By

View all
  • (2015)Multi-View Video Summarization Using Bipartite Matching Constrained Optimum-Path Forest ClusteringIEEE Transactions on Multimedia10.1109/TMM.2015.244355817:8(1166-1173)Online publication date: Aug-2015
  • (2015)MAC-REALM: A Video Content Feature Extraction and Modelling FrameworkThe Computer Journal10.1093/comjnl/bxv04258:9(2135-2171)Online publication date: 29-Jun-2015
  • (2013)Bag of visual words model for videos segmentation into scenesProceedings of the Fifth International Conference on Internet Multimedia Computing and Service10.1145/2499788.2499814(191-194)Online publication date: 17-Aug-2013
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
ICVGIP '10: Proceedings of the Seventh Indian Conference on Computer Vision, Graphics and Image Processing
December 2010
533 pages
ISBN:9781450300605
DOI:10.1145/1924559
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 12 December 2010

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. scene detection
  2. shot clustering
  3. video segmentation

Qualifiers

  • Research-article

Conference

ICVGIP '10

Acceptance Rates

Overall Acceptance Rate 95 of 286 submissions, 33%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 11 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2015)Multi-View Video Summarization Using Bipartite Matching Constrained Optimum-Path Forest ClusteringIEEE Transactions on Multimedia10.1109/TMM.2015.244355817:8(1166-1173)Online publication date: Aug-2015
  • (2015)MAC-REALM: A Video Content Feature Extraction and Modelling FrameworkThe Computer Journal10.1093/comjnl/bxv04258:9(2135-2171)Online publication date: 29-Jun-2015
  • (2013)Bag of visual words model for videos segmentation into scenesProceedings of the Fifth International Conference on Internet Multimedia Computing and Service10.1145/2499788.2499814(191-194)Online publication date: 17-Aug-2013
  • (2013)Static Summarization of Video Scenes Based on Minimal Spanning TreePattern Recognition and Machine Intelligence10.1007/978-3-642-45062-4_60(437-444)Online publication date: 2013

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media