[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Computing elevation maxima by searching the gauss sphere

Published: 27 July 2011 Publication History

Abstract

The elevation function on a smoothly embedded 2-manifold in ℝ3 reflects the multiscale topography of cavities and protrusions as local maxima. The function has been useful in identifying coarse docking configurations for protein pairs. Transporting the concept from the smooth to the piecewise linear category, this article describes an algorithm for finding all local maxima. While its worst-case running time is the same as of the algorithm used in prior work, its performance in practice is orders of magnitudes superior. We cast light on this improvement by relating the running time to the total absolute Gaussian curvature of the 2-manifold.

References

[1]
Agarwal, P. K., Edelsbrunner, H., Harer, J., and Wang, Y. 2006. Extreme elevation on a 2-manifold. Discrete Comput. Geom. 36, 553--572.
[2]
Alboul, L. and Echeverria., G. 2005. Polyhedral Gauss maps and curvature characterization of triangle meshes. In Proceedings of the 11th IMA International Conference. Springer, Berlin, 14--33.
[3]
Banchoff, T. F. 1970. Critical points and curvature for embedded polyhedral surfaces. Am. Math. Mon. 77, 475--485.
[4]
Biogeometry. 2005. The biogeometry project. http://biogeometry.duke.edu/.
[5]
Cazals, F., Chazal, F., and Lewiner., T. 2003. Molecular shape analysis based upon the Morse-Smale complex and the connolly function. In Proceedings of the 19th Annual Symposium on Computational Geometry (SCG'03). ACM, New York, 351--360.
[6]
CGAL. 2011. Computational geometry algorithms library. http://www.cgal.org.
[7]
Cheng, H. L., Dey, T. K., Edelsbrunner, H., and Sullivan, J. 2001. Dynamic skin triangulation. Discrete Comput. Geom. 25, 525--568.
[8]
Cohen-Steiner, D., Edelsbrunner, H., and Harer., J. 2007. Stability of persistence diagrams. Discrete Comput. Geom. 37, 103--120.
[9]
Cohen-Steiner, D., Edelsbrunner, H., and Harer, J. 2009. Extending persistence using Poincaré and Lefschetz duality. Found. Comput. Math. 9, 79--103.
[10]
Cohen-Steiner, D. and Morvan, J. 2006. Second fundamental measure of geometric sets and local approximation of curvatures. J. Differ. Geom. 74, 3, 363--394.
[11]
Cole-McLaughlin, K., Edelsbrunner, H., Harer, J., Natarajan, V., and Pascucci, V. 2004. Loops in Reeb graphs of 2-manifolds. Discrete Comput. Geom. 32, 231--244.
[12]
Connolly, M. L. 1983. Analytic molecular surface calculation. J. Appl. Crystallog. 6, 548--558.
[13]
Connolly., M. L. 1986. Shape complementarity at the hemoglobin albl subunit interface. Biopolymers 25, 1229--1247.
[14]
de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O. 1997. Computational Geometry - Algorithms and Applications. Springer-Verlag, Berlin.
[15]
Edelsbrunner, H. 1999. Deformable smooth surface design. Discrete Comput. Geom. 21, 87--115.
[16]
Edelsbrunner, H., Letscher, D., and Zomorodian, A. 2002. Topological persistence and simplification. Discrete Comput. Geom. 28, 511--533.
[17]
Georgiadis, L., Tarjan, R., and Werneck, R. F. 2006. Design of data structure for mergeable trees. In Proceedings of the 17th Annual ACM-SIAM Symposium Discrete Algorithms (SODA'06). ACM, New York, 394--403.
[18]
Morvan, J. 2008. Generalized Curvatures. Springer-Verlag, Berlin.
[19]
Munkres, J. R. 1984. Elements of Algebraic Topology. Addison-Wesley, Redwood City, CA.
[20]
Petterson, E. F., Goddard, T. D., Huang, C. C., Gouch, G. S., Greenblatt, D. M., Meng, E. C., and Ferrin, T. E. 2004. Ucsf chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605--1612.
[21]
Sanner, M. F. and Olson, A. J. 1996. Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38, 305--320.
[22]
Santaló, L. 2004. Integral Geometry and Geometric Probability. Cambridge University Press, Cambridge, UK.
[23]
Wang, Y., Agarwal, P. K., Brown, P., Edelsbrunner, H., and Rudolph, J. 2005. Course and reliable geometric alignment for protein docking. In Proceedings of the Pacific Symposium on Biocomputing. Singapore, 64--75.
[24]
Welzl, E. 1991. Smallest enclosing disks (balls and ellipsoids). In Proceedings of the Symposium on New Results and New Trends in Computer Science. Springer, Berlin, 359--370.
[25]
Zomorodian, A. and Edelsbrunner, H. 2002. Fast software for box intersections. Int. J. Comput. Geom. Appl. 12, 143--172.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Journal of Experimental Algorithmics
ACM Journal of Experimental Algorithmics  Volume 16, Issue
2011
411 pages
ISSN:1084-6654
EISSN:1084-6654
DOI:10.1145/1963190
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 July 2011
Published in JEA Volume 16

Author Tags

  1. Elevation function
  2. Gauss map
  3. absolute Gaussian curvature
  4. algorithms
  5. computational experiments
  6. persistent homology
  7. protein surfaces

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 145
    Total Downloads
  • Downloads (Last 12 months)2
  • Downloads (Last 6 weeks)0
Reflects downloads up to 11 Dec 2024

Other Metrics

Citations

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media