[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Scaling self-timed systems powered by mechanical vibration energy harvesting

Published: 18 June 2008 Publication History

Abstract

Passive energy harvesting from mechanical vibration has wide application in wearable devices and wireless sensors to complement or replace batteries. Energy harvesting efficiency can be increased by eliminating AC/DC conversion. A test chip demonstrating self-timing, power-on reset circuitry, and dynamic memory for energy harvesting AC voltages has been designed in 180 nm CMOS and tested. An energy scalable DSP architecture implements FIR filters that consume as little as 170 pJ per output sample. The on-chip DRAM retains data for up to 28 ms while register data is retained down to a supply voltage of 153 mV. Circuit operation is confirmed for supply frequencies between 60 Hz and 1 kHz with power consumption below 130 μW. Reaching the limits of miniaturization will require approaching the limits of power dissipation. We extrapolate from this DSP architecture to find the minimum volume required for mechanical vibration energy harvesting sensors.

References

[1]
Amirtharajah, R. and Chandrakasan, A. 1998. Self-Powered signal processing using vibration-based power generation. IEEE J. Solid-State Circ. 33, 5, 687--695.
[2]
Amirtharajah, R. and Chandrakasan, A. 2004. A micropower programmable DSP using approximate signal processing based on distributed arithmetic. IEEE J. Solid-State Circ. 39, 2, 337--347.
[3]
Amirtharajah, R., Chen, A., Thaker, D., and Chong, F. T. 2005. Circuit interfaces and optimization for resistive nanosensors. In Nanosensing: Materials and Devices, M. S. Islam and A. K. Dutta, Eds.
[4]
Amirtharajah, R., Wenck, J., Collier, J., Siebert, J., and Zhou, B. 2006. Circuits for energy harvesting sensor signal processing. In Proceedings of the 43rd Design Automation Conference (DAC'06). 639--644.
[5]
Amirtharajah, R., Xanthopoulos, T., and Chandrakasan, A. 1999. Power scalable processing using distributed arithmetic. In Proceedings of the International Symosium on Low-Power Electronics and Design (ISLPED'99). 170--175.
[6]
Briole, S., Pacha, C., Goser, K., Kaiser, A., Thewes, R., Weber, W., and Brederlow, R. 2004. AC-Only RF ID tags for barcode replacement. In ISSCC'04 Digest of Technical Papers. 438--439.
[7]
Calhoun, B. and Chandrakasan, A. 2005. Ultra-Dynamic voltage scaling using sub-threshold operation and local voltage dithering in 90nm cmos. In ISSCC'05 Digest of Technical Papers. Vol. 1, 300--599.
[8]
Calhoun, B. H., Daly, D. C., Verma, N., Finchelstein, D. F., Wentzloff, D. D., Wang, A., Cho, S.-H., and Chandrakasan, A. P. 2005. Design considerations for ultra-low energy wireless microsensor nodes. IEEE Trans. Comput. 54, 6.
[9]
Cho, T. S., Lee, K.-J., Kong, J., and Chandrakasan, A. P. 2007. A low power carbon nanotube chemical sensor system. In Proceedings of the IEEE Custom Integrated Circuits Conference (CICC'07). 181--184.
[10]
Digilent. 2004. Digilent pegasus board reference manual. http://www.digilentinc.com/Data/Products/PEGASUS/PEGASUS-rm.pdf.
[11]
Ghovanloo, M. and Najafi, K. 2004. Fully integrated wideband high-current rectifiers for inductively powered devices. IEEE J. Solid-State Circ. 39, 11,1976--1984.
[12]
Guilar, N., Chen, A., Kleeburg, T., and Amirtharajah, R. 2006. Integrated solar energy harvesting and storage. In Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED'06). 20--24.
[13]
Guilar, N. J., Amirtharajah, R., and Hurst, P. J. 2009a. A full-wave rectifier with integrated peak selection for multiple electrode piezoelectric energy harvesters. IEEE J. Solid-State Circ. 44, 1, 240--246.
[14]
Guilar, N. J., Amirtharajah, R., Hurst, P. J., and Lewis, S. H. 2009b. An energy-aware multiple-input power supply with charge recovery for energy harvesting applications. In ISSCC'09 Digest of Technical Papers. 298--299.
[15]
Hanson, M., Powell, H., Barth, A., Ringgenberg, K., Calhoun, B., Aylor, J., and Lach, J. 2009. Body area sensor networks: Challenges and opportunities. Comput. 42, 1, 58--65.
[16]
Ishibashi, K., Fujimoto, T., Yamashita, T., Okada, H., Arima, Y., Hashimoto, Y., Sakata, K., Minematsu, I., Itoh, Y., Toda, H., Ichihashi, M., Komatsu, Y., Hagiwara, M., and Tsukada, T. 2006. Low-Voltage and low-power logic, memory, and analog circuit techniques for SoCs using 90 nm technology and beyond. IEICE Trans. Electron. E89-C, 3, 250--262.
[17]
Itoh, L., Osada, K., and Kawahara, T. 2004. Reviews and future prospects of low-voltage embedded RAMs. In Proceedings of the IEEE Custom Integrated Circuits Conference. 339--344.
[18]
Jiang, X., Polastre, J., and Culler, D. 2005. Perpetual environmentally powered sensor networks. In Proceedings of the 4thInternational Symposium on Information Processing in Sensor Networks (IPSN'05). 463--468.
[19]
Kirihata, T., Parries, P., Hanson, D., Kim, H., Golz, J., Fredeman, G., Rajeevakumar, R., Griesemer, J., Robson, N., Cestero, A., Wordeman, M., and Iyer, S. 2004. An 800mhz embedded DRAM with a concurrent refresh mode. In ISSCC'04 Digest of Technical Papers. Vol., 1, 206--523.
[20]
Kwong, J., Ramadass, Y., Verma, N., and Chandrakasan, A. 2009. A 65 nm sub-Vt microcontroller with integrated SRAM and switched capacitor DC-DC converter. IEEE J. Solid-State Circ. 44, 1,115--126.
[21]
Lee, J. M., Yuen, S. C., Li, W. J., and Leong, P. H. 2003. Development of an AA size energy transducer with micro resonators. In Proceedings of the IEEE International Symposium on Circuits and Systems. 876--879.
[22]
Lotze, N., Ortmanns, M., and Manoli, Y. 2007. A study on self-timed asynchronous sub- threshold logic. In Proceedings of the 25th International Conference on Computer Design (ICCD'07). 533--540.
[23]
Meninger, S., Mur-Miranda, J., Amirtharajah, R., Chandrakasan, A., and Lang, J. 2001. Vibration-to-Electric energy conversion. IEEE Trans. VLSI Syst. 9, 1, 64--76.
[24]
Mitcheson, P. D., Green, T. C., Yeatman, E. M., and Holmes, A. S. 2004. Architectures for vibration-driven micropower generators. J. Microelectromechan. Syst. 13, 3, 429--440.
[25]
Moteiv. 2006. Tmote sky: Datasheet. http://www.sentilla.com/moteiv-transition.html.
[26]
Murmann, B. 2008. A/D converter trends: Power dissipation, scaling and digitally assisted architectures. In Proceedings of the IEEE Custom Integrated Circuits Conference (CICC'08). 105--112.
[27]
Otis, B., Chee, Y., and Rabaey, J. 2005. A 400 /mu/W-rx, 1.6mW-tx super-regenerative transceiver for wireless sensor networks. In ISSCC'05 Digest of Technical Papers. Vol. 1, 396--606.
[28]
Otis, B. and Rabaey, J. 2007. Ultra-Low Power Wireless Technologies for Sensor Networks. Springer.
[29]
Qin, H., Cao, Y., Markovic, D., Vladimirescu, A., and Rabaey, J. M. 2005. Standby supply voltage minimization for deep sub-micron SRAM. Microelectron. J. 36, 9, 789--800.
[30]
Rabaey, J., Chandrakasan, A., and Nikolic, B. 2003. Digital Integrated Circuits: A Design Perspective 2nd. Ed. Prentice-Hall, Upper Saddle River, NJ.
[31]
Roundy, S., Otis, B., Chee, Y.-H., Rabaey, J., and Wright, P. 2003a. A 1.9GHz RF transmit beacon using environmentally scavenged energy. In Proceedings of the International Symosium on Low-Power Electronics and Design (ISLPED'03).
[32]
Roundy, S., Wright, P., and Pister, K. 2002. Micro-Electrostatic vibration-to-electricity converters. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition (IMECE'02).
[33]
Roundy, S., Wright, P., and Rabaey, J. 2003b. A study of low level vibrations as a power source for wireless sensor nodes. Comput. Comm. 26, 11, 1131--1144.
[34]
Scott, M., Boser, B., and Pister, K. July 2003. An ultralow-energy ADC for smart dust. IEEE J. Solid-State Cir. 38, 7, 1123--1129.
[35]
Seok, M., Hanson, S., Lin, Y.-S., Foo, Z., Kim, D., Lee, Y., Liu, N., Sylvester, D., and Blaauw, D. 2008. The phoenix processor: A 30pW platform for sensor applications. In Proceedings of the IEEE Symposium on VLSI Circuits. 188--189.
[36]
Siebert, J. 2005. Pipelined datapaths for AC power supplies. M.S. thesis, University of California, Davis.
[37]
Siebert, J., Collier, J., and Amirtharajah, R. 2005. Self-Timed circuits for energy harvesting AC power supplies. In Proceedings of the International Symposium on Low-Power Electronics and Design (ISLPED'05). 315--318.
[38]
Spars, J. 2001. Principles of Asynchronous Circuit Design: A Systems Perspective. Kluwer Academic Publishers, Boston.
[39]
Vittoz, E. 1990. Future of analog in the vlsi environment. In Proceedings of the IEEE International Symposium on Circuits and Systems. Vol. 2, 1372--1375.
[40]
Vittoz, E. 1994. Low-Power design: Ways to approach the limits. In ISSCC'94 Digest of Technical Papers. 14--18.
[41]
Wang, A. and Chandrakasan, A. P. 2004. A 180mV FFT processor using subthreshold circuit techniques. In ISSCC'04 Digest of Technical Papers. 292--293.
[42]
Warneke, B. and Pister, K. 2004. An ultra-low energy microcontroller for smart dust wireless sensor networks. In ISSCC'04 Digest of Technical Papers. Vol. 1, 316--317.
[43]
Wenck, J., Amirtharajah, R., Collier, J., and Siebert, J. 2007. AC power supply circuits for energy harvesting. In Proceedings of the IEEE Symposium on VLSI Circuits. 92--93.
[44]
White, S. A. 1989. Applications of distributed arithmetic to digital signal processing: A tutorial review. IEEE ASSP Mag., 4--19.
[45]
Yasuda, T., Yamamoto, M., and Nishi, T. 2001. A power-on reset pulse generator for low voltage applications. In Proceedings of the IEEE International Symposium on Circuit and Systems (ISCAS'01). Vol. 4, 599--601.
[46]
Zhou, B. 2004. Memory design for energy scalable reconfigurable logic. M.S. thesis, University of California, Davis.

Cited By

View all
  • (2023)Eternal-thing 2.0: Analog-Trojan-resilient Ripple-less Solar Harvesting System for Sustainable IoTACM Journal on Emerging Technologies in Computing Systems10.1145/357580019:2(1-25)Online publication date: 28-Mar-2023
  • (2023)Maximum AoI Minimization for Target Monitoring in Battery-Free Wireless Sensor NetworksIEEE Transactions on Mobile Computing10.1109/TMC.2022.316197522:8(4754-4772)Online publication date: 1-Aug-2023
  • (2018)Conversion of atmospheric variations into electric power – Design and analysis of an electric power generator systemRenewable Energy10.1016/j.renene.2017.12.080120(478-487)Online publication date: May-2018
  • Show More Cited By

Index Terms

  1. Scaling self-timed systems powered by mechanical vibration energy harvesting

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Journal on Emerging Technologies in Computing Systems
      ACM Journal on Emerging Technologies in Computing Systems  Volume 6, Issue 2
      June 2010
      99 pages
      ISSN:1550-4832
      EISSN:1550-4840
      DOI:10.1145/1773814
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Journal Family

      Publication History

      Accepted: 01 February 2010
      Revised: 01 February 2010
      Received: 01 June 2009
      Published: 18 June 2008
      Published in JETC Volume 6, Issue 2

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. AC power supply
      2. DRAM
      3. energy harvesting
      4. energy-aware systems
      5. integrated circuits
      6. low-power design
      7. power-on reset
      8. scaling
      9. self-timed

      Qualifiers

      • Research-article
      • Research
      • Refereed

      Funding Sources

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)3
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 13 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2023)Eternal-thing 2.0: Analog-Trojan-resilient Ripple-less Solar Harvesting System for Sustainable IoTACM Journal on Emerging Technologies in Computing Systems10.1145/357580019:2(1-25)Online publication date: 28-Mar-2023
      • (2023)Maximum AoI Minimization for Target Monitoring in Battery-Free Wireless Sensor NetworksIEEE Transactions on Mobile Computing10.1109/TMC.2022.316197522:8(4754-4772)Online publication date: 1-Aug-2023
      • (2018)Conversion of atmospheric variations into electric power – Design and analysis of an electric power generator systemRenewable Energy10.1016/j.renene.2017.12.080120(478-487)Online publication date: May-2018
      • (2015)Sustaining a perpetual wireless sensor network by multiple on-demand mobile wireless chargers2015 IEEE 12th International Conference on Networking, Sensing and Control10.1109/ICNSC.2015.7116093(533-538)Online publication date: Apr-2015
      • (2014)Dynamic Activation Policies for Event Capture in Rechargeable Sensor NetworkIEEE Transactions on Parallel and Distributed Systems10.1109/TPDS.2013.229709625:12(3124-3134)Online publication date: Dec-2014
      • (2014)Programming wireless recharging for target-oriented rechargeable sensor networksProceedings of the 11th IEEE International Conference on Networking, Sensing and Control10.1109/ICNSC.2014.6819654(367-371)Online publication date: Apr-2014
      • (2014)Revisiting multi-node wireless magnetic resonant coupling charging in sensor networks2014 IEEE International Conference on Control Science and Systems Engineering10.1109/CCSSE.2014.7224522(126-129)Online publication date: Dec-2014
      • (2012)Dynamic Activation Policies for Event Capture with Rechargeable SensorsProceedings of the 2012 IEEE 32nd International Conference on Distributed Computing Systems10.1109/ICDCS.2012.70(152-162)Online publication date: 18-Jun-2012
      • (2012)Event inter-arrival time weighted activation policies for rechargeable wireless sensorsProceedings of 2012 2nd International Conference on Computer Science and Network Technology10.1109/ICCSNT.2012.6526115(1091-1094)Online publication date: Dec-2012

      View Options

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media