[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/1570256.1570421acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
tutorial

An information perspective on evolutionary computation

Published: 08 July 2009 Publication History
First page of PDF

References

[1]
D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization. IEEE Trans Evolutionary Computation, 4:67--82, 1997.
[2]
C. Schumacher and M. Vose and D. Whitley. The No Free Lunch and Problem Description Length. GECCO 2001.
[3]
W.G. Macready and D.H. Wolpert. What makes an optimization problem hard?. Complex, 1:5:40--46, 1996.
[4]
P. Grünwald and P. Vitanyi. Algorithmic Complexity. Handbook on the Philosophy of Information. To appear.
[5]
T. English. Optimization is Easy and Learning is Hard In the Typical Function. Proc. 2000 Congress on Evolutionary Computation (CEC 2000), pages 924--931, 2000.
[6]
H. Buhrman, M. Li, J. Tromp, P. Vitanyi. Kolmogorov Random Graphs And The Incompressibility Method. SIAM Journal on Computing, 29:590--599.
[7]
Y. Borenstein, R. Poli. Kolmogorov complexity, Optimization and Hardness, IEEE CEC 2006
[8]
Y. Borenstein, R. Poli. Information Perspective of Optimization. PPSN 2006: 102--111.
[9]
Y. Borenstein. What Makes an Optimization Problem Hard? An Information-Theoretic Perspective. PhD Thesis, Chapter 3.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
GECCO '09: Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers
July 2009
1760 pages
ISBN:9781605585055
DOI:10.1145/1570256

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 08 July 2009

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. entropy
  2. evolutionary algorithms
  3. kolmogorov complexity
  4. optimization

Qualifiers

  • Tutorial

Conference

GECCO09
Sponsor:
GECCO09: Genetic and Evolutionary Computation Conference
July 8 - 12, 2009
Québec, Montreal, Canada

Acceptance Rates

Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 110
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 02 Mar 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media