[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/1401132.1401254acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

Tile-based methods for interactive applications

Published: 11 August 2008 Publication History

Abstract

Over the last years, several techniques have been demonstrated that rely on tile-based methods. A lot of interactive applications could potentially benefit from these techniques. However, the state-of-the-art is scattered over several publications, and survey works are not available. In this class we give a detailed overview of tile-based methods in computer graphics. The class consist of four parts, which are briefly covered in the following paragraphs.
Tile-Based Methods using Wang and Corner Tiles The first part of the class introduces tile-based methods in computer graphics based on Wang tiles and corner tiles. This part serves as a general introduction for the class, but also covers methods and applications based on Wang tiles and corner tiles. We introduce Wang tiles and corner tiles, and present several tiling algorithms. We discuss in detail tile-based texture mapping using graphics hardware, tile-based generation of Poisson disk distributions, and object distribution for procedural texturing. We briefly cover other applications such as sampling, non-photorealistic rendering, and geometric object distribution. The lecturer for the first part is Ares Lagae, who recently finished his PhD about tile-based methods in computer graphics [Lagae, 2007].
Periodic Tilings for Computer Graphics Applications The second part of the class introduces the mathematical and algorithmic aspects of decorative tilings such as those used by M. C. Escher. It focuses on the theory of isohedral tilings, tilings that cover the plane systematically with congruent copies of a single shape. The isohedral tilings are flexible enough to support a wide variety of applications in art and design, while admitting a compact and efficient implementation. We show how to store, manipulate and render isohedral tilings, and survey some recent applications. The lecturer for the second part is Craig Kaplan, an expert on the use of computer graphics in ornamental design Kaplan [2002].
Tile-Based Methods for Surface Modeling The third part of the class covers tilebased methods for surface modeling. Tiling is a practical and cost-effective method for high-quality surface modeling and rendering. Rather than intensive data acquisition and synthesis, the generalized Wang tile set presented in this part of the talk allows us to seamlessly and non-periodically tile texture data on parameterized surfaces of arbitrary topology. Once we synthesize textures on tiles, we can reuse the same tile set on different surfaces and we can also instantaneously change the surface appearance by just switching the reference tile set. Further than color textures, we also extend surface tiling to include bump maps, geometry details, the BTF's, as well as Poisson disk tiling. The lecturer for the third part is Chi-Wing Fu, who wrote several papers on this topic [Fu and Leung, 2005].
Non-Periodic Tilings for Computer Graphics Applications The fourth part of the class covers an important class of non-periodic tilings and their benefits for computer graphics applications. First, the theory of Penrose tilings is presented. We show how the inherent self-similarity of Penrose tiling can be exploited in order to get efficient implementation of uniform distributions with blue-noise properties. Then, we present polyomino-based uniform distributions, and show their advantages. Finally, we explore other non-periodic tiling systems, potentially usable for computer graphics applications: dodecagonal tiling, Ammann tiling, etc. The lecturer for the fourth part is Victor Ostromoukhov who is an expert in this topic [Ostromoukhov et al., 2004; Ostromoukhov, 2007].
Tile-Based Methods for Non-Photorealistic Rendering and Landscape Modeling The fifth part of the class covers applications of tile-based methods in the fields of non-photorealistic rendering and landscape modeling [Cohen et al., 2003]. Using hierarchical tile sets one is able to create point sets with infinite density still showing Poisson disk characteristics [Kopf et al., 2006]. We will demonstrate this using a set of tiles that is recursively subdivided. This is possible because the set shows self similarity. The resulting points can be used to create stipple drawings and also distributions of plants that also show Poisson disk behavior. This will be demonstrated by an application that enables real-time modeling and rendering of complex landscapes. The lecturer for the fifth part is Oliver Deussen, who has considerable experience with tile-based design.

Supplementary Material

JPG File (a93-lagae.jpg)
MOV File (a93-lagae.mov)

References

[1]
Agarwal, S., Rammamoorthi, R., Belongie, S., and Jensen, H. W. Strcutured importance sampling of environment maps. ACM Transactions on Graphics, 22(3):605--612, 2003.
[2]
Ball, W. W. R. Mathematical recreations and essays. MacMillan and Co., 1926.
[3]
Berger, R. The undecidability of the domino problem. Memoirs American Mathematical Society, 66:1--72, 1966.
[4]
Bonet, J. S. D. Multiresolution sampling procedure for analysis and synthesis of texture images. In Proceedings of ACM SIGGRAPH 1997, pages 361--368. 1997.
[5]
Burchill, L. Graphics goodies #2 - a simple, versatile procedural texture. Computer Graphics, 22(1):29--30, 1988.
[6]
Catmull, E. E. A Subdivision Algorithm for Computer Display of Curved Surfaces. Ph.D. thesis, Department of Computer Science, University of Utah, 1974.
[7]
Cipra, B. Packing challenge mastered at last. Science, 281, 1998.
[8]
Cohen, J. and Debevec, P. LightGen, HDRShop plugin. http://gl.ict.usc.edu/HDRShop/lightgen/lightgen.html, 2001.
[9]
Cohen, M. F., Shade, J., Hiller, S., and Deussen, O. Wang tiles for image and texture generation. ACM Transactions on Graphics, pages 287--294, 2003.
[10]
Cook, R. L. Stochastic sampling in computer graphics. Computer Graphics (Proceedings of ACM SIGGRAPH 86), 5(1):51--72, 1986.
[11]
Cook, R. L. and DeRose, T. Wavelet noise. ACM Transactions on Graphics, 24(3):803--811, 2005.
[12]
Crow, F. C. The aliasing problem in computer-generated shaded images. Communications of the ACM, 20(11):799--805, 1977.
[13]
Culik, II, K. An aperiodic set of 13 Wang tiles. Discrete Mathematics, 160(1--3):245--251, 1996.
[14]
Culik, II, K. and Kari, J. An aperiodic set of Wang cubes. Journal of Universal Computer Science, 1(10), 1995.
[15]
Deussen, O., Hanrahan, P., Lintermann, B., Měch, R., Pharr, M., and Prusinkiewicz, P. Realistic modeling and rendering of plant ecosystems. In Proceedings of ACM SIGGRAPH 1998, pages 275--286. 1998.
[16]
Deussen, O., Hiller, S., van Overveld, C., and Strothotte, T. Floating points: A method for computing stipple drawings. Computer Graphics Forum, 19(3):40--51, 2000.
[17]
Dippé, M. A. Z. and Wold, E. H. Antialiasing through stochastic sampling. Computer Graphics (Proceedings of ACM SIGGRAPH 85), 19(3):69--78, 1985.
[18]
Dunbar, D. and Humphreys, G. A spatial data structure for fast Poisson-disk sample generation. ACM Transactions on Graphics, 25(3):503--508, 2006.
[19]
Dutré, P., Bala, K., and Bekaert, P. Advanced Global Illumination. A. K. Peters, Ltd., Natick, MA, USA, 2002.
[20]
Ebert, D. S., Musgrave, F. K., Peachey, D., Perlin, K., and Worley, S. Texturing and Modeling: A Procedural Approach. Morgan Kaufmann Publishers, Inc., 2002.
[21]
Efros, A. A. and Freeman, W. T. Image quilting for texture synthesis and transfer. In Proceedings of ACM SIGGRAPH 2001, pages 341--346. 2001.
[22]
Efros, A. A. and Leung, T. K. Texture synthesis by non-parametric sampling. In International Conference on Computer Vision, pages 1033--1038. 1999.
[23]
Escher, M. C. and Locher, J. C. The World of M. C. Escher. Abrams, New York, NY, USA, 1971.
[24]
Fu, C.-W. and Leung, M.-K. Texture tiling on arbitrary topological surfaces using Wang tiles. In Rendering Techniques 2005, pages 99--104. 2005.
[25]
Gielis, J. A generic geometric transformation that unifies a wide range of natural and abstract shapes. American Journal of Botany, 90(3):333--338, 2003.
[26]
Gielis, J., Beirinckx, B., and Bastiaens, E. Superquadrics with rational and irrational symmetry. In Proceedings of the eighth ACM symposium on Solid modeling and applications, pages 262--265. 2003.
[27]
Glassner, A. Andrew Glassner's notebook: recreational computer graphics. Morgan Kaufmann Publishers, Inc., San Fransisco, CA, USA, 1999.
[28]
Gooch, B. and Gooch, A. Non-Photorealistic Rendering. A. K. Peters, Ltd., Natick, MA, USA, 2002.
[29]
Grünbaum, B. and Shepard, G. C. Tilings and patterns. W. H. Freeman and Company, 1986.
[30]
Hausner, A. Simulating decorative mosaics. In Proceedings of ACM SIGGRAPH 2001, pages 573--580. 2001.
[31]
Heeger, D. J. and Bergen, J. R. Pyramid-based texture analysis/synthesis. In Proceedings of ACM SIGGRAPH 1995, pages 229--238. 1995.
[32]
Hiller, S., Deussen, O., and Keller, A. Tiled blue noise samples. In Vision, Modeling, and Visualization 2001, pages 265--272. 2001.
[33]
Jones, T. R. Efficient generation of Poisson-disk sampling patterns. Journal of Graphics Tools, 11(2):27--36, 2006.
[34]
Kaplan, C. S. and Salesin, D. H. Escherization. In Proceedings of ACM SIGGRAPH 2000, pages 499--510. 2000.
[35]
Klassen, R. V. Filtered jitter. Computer Graphics Forum, 19(4):223--230, 2000.
[36]
Knuth, D. E. The art of computer programming, volume 1. Addison-Wesley, Reading, MA, USA, 1968.
[37]
Kollig, T. and Keller, A. Efficient illumination by high dynamic range images. In Proceedings of the 14th Eurographics workshop on Rendering, pages 45--50. 2003.
[38]
Kopf, J., Cohen-Or, D., Deussen, O., and Lischinski, D. Recursive Wang tiles for real-time blue noise. ACM Transactions on Graphics, 25(3):509--518, 2006.
[39]
Kwatra, V., Essa, I., Bobick, A., and Kwatra, N. Texture optimization for example-based synthesis. ACM Transactions on Graphics, 24(3):795--802, 2005.
[40]
Kwatra, V., Schödl, A., Essa, I., Turk, G., and Bobick, A. Graphcut textures: image and video synthesis using graph cuts. ACM Transactions on Graphics, 22(3):277--286, 2003.
[41]
Lagae, A. and Dutré, P. A procedural object distribution function. ACM Transactions on Graphics, 24(4):1442--1461, 2005.
[42]
Lagae, A. and Dutré, P. An alternative for Wang tiles: Colored edges versus colored corners. ACM Transactions on Graphics, 25(4):1442--1459, 2006a.
[43]
Lagae, A. and Dutré, P. Long period hash functions for procedural texturing. In Vision, Modeling, and Visualization 2006, pages 225--228. Akademische Verlagsgesellschaft Aka GmbH, Berlin, 2006b.
[44]
Lagae, A. and Dutré, P. Poisson sphere distributions. In Vision, Modeling, and Visualization 2006, pages 373--379. Akademische Verlagsgesellschaft Aka GmbH, Berlin, 2006c.
[45]
Lagae, A. and Dutré, P. The tile packing problem. Report CW 461, Department of Computer Science, K. U. Leuven, Leuven, Belgium, 2006d.
[46]
L'Ecuyer, P. Efficient and portable combined random number generators. Communications of the ACM, 31(6):742--749, 1988.
[47]
Lefebvre, S. and Neyret, F. Pattern based procedural textures. In Proceedings of the 2003 Symposium on Interactive 3D Graphics, pages 203--212. 2003.
[48]
Lewis, J. P. Algorithms for solid noise synthesis. Computer Graphics (Proceedings of ACM SIGGRAPH 89), 23(3):263--270, 1989.
[49]
Liang, L., Liu, C., Xu, Y.-Q., Guo, B., and Shum, H.-Y. Real-time texture synthesis by patch-based sampling. ACM Transactions on Graphics, 20(3):127--150, 2001.
[50]
Liu, Y., Lin, W.-C., and Hays, J. Near-regular texture analysis and manipulation. ACM Transactions on Graphics, 23(3):368--376, 2004.
[51]
Lloyd, S. P. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2):129--137, 1982.
[52]
Lu, A. and Ebert, D. S. Example-based volume illustrations. In Proceedings of IEEE Visualization, pages 655--662. 2005
[53]
MacMahon, M. P. A. New mathematical pastimes. Cambridge University Press, 1921.
[54]
Matsumoto, M. and Nishimura, T. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation, 8(1):3--30, 1998.
[55]
McCool, M. and Fiume, E. Hierarchical Poisson disk sampling distributions. In Proceedings of Graphics Interface '92, pages 94--105. 1992.
[56]
Mitchell, D. P. Generating antialiased images at low sampling densities. Computer Graphics (Proceedings of ACM SIGGRAPH 87), 21(4):65--72, 1987.
[57]
Mitchell, D. P. Spectrally optimal sampling for distribution ray tracing. Computer Graphics (Proceedings of ACM SIGGRAPH 91), 25(4):157--164, 1991.
[58]
Neyret, F. and Cani, M.-P. Pattern-based texturing revisited. In Proceedings of ACM SIGGRAPH 1999, pages 235--242. 1999.
[59]
Ng, T.-Y., Wen, C., Tan, T.-S., Zhang, X., and Kim, Y. J. Generating an ω-tile set for texture synthesis. In Proceedings of Computer Graphics International 2005, pages 177--184. 2005.
[60]
Ostromoukhov, V., Donohue, C., and Jodoin, P.-M. Fast hierarchical importance sampling with blue noise properties. ACM Transactions on Graphics, 23(3):488--495, 2004.
[61]
Parish, Y. I. H. and Müller, P. Procedural modeling of cities. In Proceedings of ACM SIGGRAPH 2001, pages 301--308. 2001.
[62]
Peachy, D. R. Solid texturing of complex surfaces. Computer Graphics (Proceedings of ACM SIGGRAPH 85), 19(3):279--286, 1985.
[63]
Penrose, R. The rôle of aesthetics in pure and applied mathematical research. Bulletin of the Institute of Mathematics and its Applications, 10:266--271, 1974.
[64]
Perlin, K. An image synthesizer. Computer Graphics (Proceedings of ACM SIGGRAPH 85), 19(3):287--296, 1985.
[65]
Perlin, K. Improving noise. ACM Transactions on Graphics, pages 681--682, 2002.
[66]
Perlin, K. and Hoffert, E. M. Hypertexture. Computer Graphics (Proceedings of ACM SIGGRAPH 89), 23(3):253--262, 1989.
[67]
Pharr, M. and Humphreys, G. Physically Based Rendering. Morgan Kaufmann Publishers, Inc., San Fransisco, CA, USA, 2004.
[68]
Saladin, H. L'Alhambra de Grenade. Morance, Paris, France, 1926.
[69]
Secord, A., Heidrich, W., and Streit, L. Fast primitive distribution for illustration. In Proceedings of the 13th Eurographics workshop on Rendering, pages 215--226. 2002.
[70]
Shade, J., Cohen, M. F., and Mitchell, D. P. Tiling layered depth images. Technical report, University of Washington, Department of Computer Science and Engineering, 2000.
[71]
Stam, J. Aperiodic texture mapping. Technical Report ERCIM-01/97-R046, European Research Consortium for Informatics and Mathematics (ECRIM), 1997.
[72]
Steinhaus, H. Mathematical Snapshots. Dover Publications, Inc., Mineaola, NY, USA, 1999.
[73]
Tufte, E. R. The Visual Display of Quantitative Information. Graphics Press, Cheshire, CT, USA, 1986.
[74]
Turk, G. Generating textures on arbitrary surfaces using reaction-diffusion. Computer Graphics (Proceedings of ACM SIGGRAPH 91), 25(4):289--298, 1991.
[75]
Ulichney, R. Digital Halftoning. The MIT Press, Cambridge, MA, USA, 1987.
[76]
Wang, H. Proving theorems by pattern recognition - II. Bell Systems Technical Journal, 40:1--42, 1961.
[77]
Wang, H. Games, logic and computers. Scientific American, 213(5):98--106, 1965.
[78]
Wei, L.-Y. Tile-based texture mapping on graphics hardware. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, pages 55--63. 2004.
[79]
Wei, L.-Y. and Levoy, M. Fast texture synthesis using tree-structured vector quantization. In Proceedings of ACM SIGGRAPH 2000, pages 479--488. 2000.
[80]
Wichmann, B. A. and Hill, I. D. An efficient and portable pseudo-random number generator. Applied Statistics, 31:188--190, 1982.
[81]
Worley, S. A cellular texture basis function. In Proceedings of ACM SIGGRAPH 1996, pages 291--294. 1996.
[82]
Yellot, Jr., J. I. Spectral analysis of spatial sampling by photoreceptors: Topological disorder prevents aliasing. Vision Research, 22:1205--1210, 1982.
[83]
Yellot, Jr., J. I. Spectral consequences of photoreceptor sampling in the rhesus retina. Science, 221:382--385, 1983.
[84]
E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and J. S. B. Mitchell. An efficiently computable metric for comparing polygonal shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13:209--216, 1991.
[85]
William W. Chow. Automatic generation of interlocking shapes. Computer Graphics and Image Processing, 9:333--353, 1979.
[86]
Paul Church. Snakes in the plane. Master's thesis, School of Computer Science, University of Waterloo, 2008.
[87]
Michael F. Cohen, Jonathan Shade, Stefan Hiller, and Oliver Deussen. Wang tiles for image and texture generation. ACM Trans. Graph., 22(3):287--294, 2003.
[88]
John H. Conway, Heidi Burgiel, and Chaim Goodman-Strauss. The Symmetries of Things. A. K. Peters.
[89]
H. S. M. Coxeter. Coloured symmetry. In H. S. M. Coxeter et al., editor, M.C. Escher: Art and Science, pages 15--33. Elsevier Science Publishers B. V., 1986.
[90]
Hallard T. Croft, Kenneth J. Falconer, and Richard K. Guy. Unsolved Problems in Geometry. Springer-Verlag, 1991.
[91]
Karel Culik. An aperiodic set of 13 wang tiles. Discrete Math., 160(1--3):245--251, 1996.
[92]
Olaf Delgado Friedrichs. Data structures and algorithms for tilings i. 2003.
[93]
Andreas W. M. Dress. The 37 combinatorial types of regular "Heaven and Hell" patterns in the euclidean plane. In H. S. M. Coxeter et al., editor, M.C. Escher: Art and Science, pages 35--45. Elsevier Science Publishers B. V., 1986.
[94]
David W. Farmer. Groups and Symmetry: A Guide to Discovering Mathematics. American Mathematical Society, 1996.
[95]
Chi-Wing Fu and Man-Kang Leung. Texture tiling on arbitrary topological surfaces. In Proceedings of Eurographics Symposium on Rendering 2005 (EGSR 2005), pages 99--104, June 2005.
[96]
Andrew Glassner. Andrew Glassner's notebook: Penrose tiling. IEEE Computer Graphics & Applications, 18(4), jul--aug 1998. ISSN 0272-1716.
[97]
Solomon W. Golomb. Polyominoes: Puzzles, Patterns, Problems and Packings. Princeton University Press, second edition, 1994.
[98]
Branko Grünbaum and G. C. Shephard. Spherical tilings with transitivity properties. In Chandler Davis, Branko Grünbaum, and F. A. Sherk, editors, The Geometric Vein: The Coxeter Festschrift, pages 65--94. Springer-Verlag, New York, 1982.
[99]
Branko Grünbaum and G. C. Shephard. Tilings and Patterns. W. H. Freeman, 1987.
[100]
H. Heesch. Aufbau der ebene aus kongruenten bereichen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, pages 115--117, 1935. John Berglund provides an online English translation at http://www.angelfire.com/mn3/anisohedral/heesch35.html.
[101]
H. Heesch and O. Kienzle. Flachenschluss. Springer-Verlag, 1963.
[102]
Daniel H. Huson. The generation and classification of tile-k-transitive tilings of the euclidean plane, the sphere, and the hyperbolic plane. Geometriae Dedicata, 47:269--296, 1993.
[103]
Craig S. Kaplan. Computer Graphics and Geometric Ornamental Design. PhD thesis, Department of Computer Science & Engineering, University of Washington, 2002.
[104]
Craig S. Kaplan and David H. Salesin. Escherization. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques (SIGGRAPH 2000), pages 499--510. ACM Press/Addison-Wesley Publishing Co., 2000.
[105]
Craig S. Kaplan and David H. Salesin. Dihedral Escherization. In GI '04: Proceedings of the 2004 conference on Graphics interface, pages 255--262. Canadian Human-Computer Communications Society, 2004.
[106]
Johannes Kopf, Daniel Cohen-Or, Oliver Deussen, and Dani Lischinski. Recursive wang tiles for real-time blue noise. ACM Trans. Graph., 25(3):509--518, 2006.
[107]
Johannes Kopf, Daniel Cohen-Or, Oliver Deussen, and Dani Lischinski. Recursive wang tiles for realtime blue noise. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2006), 25(3):509--518, 2006.
[108]
Victor Ostromoukhov. Sampling with polyominoes. In SIGGRAPH '07: ACM SIGGRAPH 2007 papers, page 78. ACM, 2007.
[109]
Victor Ostromoukhov, Charles Donohue, and Pierre-Marc Jodoin. Fast hierarchical importance sampling with blue noise properties. In SIGGRAPH '04: ACM SIGGRAPH 2004 Papers, pages 488--495. ACM, 2004.
[110]
Doris Schattschneider. M.C. Escher: Visions of Symmetry. W. H. Freeman, 1990.
[111]
Marjorie Senechal. Quasicrystals and Geometry. Cambridge University Press, 1996.
[112]
A. V. Shubnikov and V. A. Koptsik. Symmetry in Science and Art. Plenum Press, 1974.
[113]
Jos Stam. Aperiodic texture mapping. Technical Report 01/97-R046, The Europeran Research Consotium for Informatics and Mathematics, 1997.
[114]
Dorothy K. Washburn and Donald W. Crowe. Symmetries of Culture. University of Washington Press, 1992.
[115]
Hermann Weyl. Symmetry. Princeton Science Library, 1989.
[116]
Jane Yen and Carlo Séquin. Escher sphere construction kit. In Proceedings of the 2001 symposium on Interactive 3D graphics, pages 95--98. ACM Press, 2001.
[117]
Ball, W. W. R. Mathematical recreations and essays. MacMillan and Co., 1926.
[118]
Berger, R. The undecidability of the domino problem. Memoirs American Mathematical Society, 66:1--72, 1966.
[119]
Chenney, S. Flow tiles. In SCA '04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 233--242. 2004.
[120]
Cohen, M. F., Shade, J., Hiller, S., and Deussen, O. Wang tiles for image and texture generation. ACM Transactions on Graphics, pages 287--294, 2003.
[121]
Culik, II, K. An aperiodic set of 13 Wang tiles. Discrete Mathematics, 160(1--3):245--251, 1996.
[122]
Culik, II, K. and Kari, J. An aperiodic set of Wang cubes. Journal of Universal Computer Science, 1(10), 1995.
[123]
Decaudin, P. and Neyret, F. Packing square tiles into one texture. In Eurographics '04 (short papers), pages 49--52. 2004a.
[124]
Decaudin, P. and Neyret, F. Rendering forest scenes in real-time. In Rendering Techniques '04 (Eurographics Symposium on Rendering), pages 93--102. 2004b.
[125]
Dungan, W., Jr., Stenger, A., and Sutty, G. Texture tile considerations for raster graphics. In SIGGRAPH '78: Proceedings of the 5th annual conference on Computer graphics and interactive techniques, pages 130--134. 1978.
[126]
Escher, M. C. and Locher, J. C. The World of M. C. Escher. Abrams, New York, NY, USA, 1971.
[127]
Fu, C.-W. and Leung, M.-K. Texture tiling on arbitrary topological surfaces using Wang tiles. In Rendering Techniques 2005, pages 99--104. 2005.
[128]
Glassner, A. Aperiodic tiling. IEEE Computer Graphics & Applications, 18(3):83--90, 1998.
[129]
Glassner, A. Andrew Glassner's notebook: recreational computer graphics. Morgan Kaufmann Publishers, Inc., San Fransisco, CA, USA, 1999.
[130]
Grünbaum, B. and Shepard, G. C. Tilings and patterns. W. H. Freeman and Company, 1986.
[131]
Hausner, A. Simulating decorative mosaics. In Proceedings of ACM SIGGRAPH 2001, pages 573--580. 2001.
[132]
Hiller, S., Deussen, O., and Keller, A. Tiled blue noise samples. In Vision, Modeling, and Visualization 2001, pages 265--272. 2001.
[133]
Kaplan, C. S. Voronoi diagrams and ornamental design. In ISAMA'99: The first annual symposium of the International Society for the Arts, Mathematics, and Architecture, pages 277--283. 1999.
[134]
Kaplan, C. S. Computer generated Islamic star patterns. In Bridges 2000: Mathematical Connections in Art, Music and Science, pages 105--112. 2000.
[135]
Kaplan, C. S. Computer Graphics and Geometric Ornamental Design. Ph.D. thesis, Department of Computer Science and Engineering, University of Washington, Seattle, USA, 2002.
[136]
Kaplan, C. S. Islamic star patterns from polygons in contact. In GI '05: Proceedings of the 2005 conference on Graphics interface, pages 177--185. Canadian Human-Computer Communications Society, 2005.
[137]
Kaplan, C. S. A meditation on Kepler's Aa. In Bridges 2006: Mathematical Connections in Art, Music and Science, pages 465--472. 2006.
[138]
Kaplan, C. S. The trouble with five. Plus Magazine, 2007. 15 pages, to appear. Invited article on five-fold tilings.
[139]
Kaplan, C. S. and Hart, G. W. Symmetrohedra: polyhedra from symmetric placement of regular polygons. In Bridges 2001: Mathematical Connections in Art, Music and Science, pages 21--28. 2001.
[140]
Kaplan, C. S. and Salesin, D. H. Escherization. In SIGGRAPH '00: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pages 499--510. ACM Press/Addison-Wesley Publishing Co., 2000.
[141]
Kaplan, C. S. and Salesin, D. H. Dihedral Escherization. In GI '04: Proceedings of the 2004 conference on Graphics interface, pages 255--262. Canadian Human-Computer Communications Society, 2004a.
[142]
Kaplan, C. S. and Salesin, D. H. Islamic star patterns in absolute geometry. ACM Trans. Graph., 23(2):97--119, 2004b.
[143]
Kari, J. A small aperiodic set of Wang tiles. Discrete Mathematics, 160(1--3):259--264, 1996.
[144]
Kopf, J., Cohen-Or, D., Deussen, O., and Lischinski, D. Recursive Wang tiles for real-time blue noise. ACM Transactions on Graphics, 25(3):509--518, 2006.
[145]
Lagae, A. Tile-Based Methods in Computer Graphics. Ph.D. thesis, Department of Computer Science, K. U. Leuven, Leuven, Belgium, 2007.
[146]
Lagae, A. and Dutré, P. A procedural object distribution function. ACM Transactions on Graphics, 24(4):1442--1461, 2005a.
[147]
Lagae, A. and Dutré, P. Template Poisson disk tiles. Report CW 413, Department of Computer Science, K. U. Leuven, Leuven, Belgium, 2005b.
[148]
Lagae, A. and Dutré, P. An alternative for Wang tiles: Colored edges versus colored corners. ACM Transactions on Graphics, 25(4):1442--1459, 2006a.
[149]
Lagae, A. and Dutré, P. Generating well-distributed point sets with a self-similar hierarchical tile. Report CW 462, Department of Computer Science, K. U. Leuven, Leuven, Belgium, 2006b.
[150]
Lagae, A. and Dutré, P. Long period hash functions for procedural texturing. In Vision, Modeling, and Visualization 2006, pages 225--228. Akademische Verlagsgesellschaft Aka GmbH, Berlin, 2006c.
[151]
Lagae, A. and Dutré, P. Poisson sphere distributions. In Vision, Modeling, and Visualization 2006, pages 373--379. Akademische Verlagsgesellschaft Aka GmbH, Berlin, 2006d.
[152]
Lagae, A. and Dutré, P. A comparison of methods for generating Poisson disk distributions. Computer Graphics Forum, 2007a. To appear.
[153]
Lagae, A. and Dutré, P. The tile packing problem. Geombinatorics, 17(1), 2007b.
[154]
Lagae, A., Kari, J., and Dutré, P. Aperiodic sets of square tiles with colored corners. Report CW 460, Department of Computer Science, K. U. Leuven, Leuven, Belgium, 2006.
[155]
Lefebvre, S. and Neyret, F. Pattern based procedural textures. In Proceedings of the 2003 Symposium on Interactive 3D Graphics, pages 203--212. 2003.
[156]
Lemmen, H. V. Tiles 1000 Years of Architectural Decoration. Harry N. Abrams, Inc., 1993.
[157]
Leung, M.-K., Pang, W.-M., Fu, C.-W., Wong, T.-T., and Heng, P.-A. Tileable BTF. IEEE Transactions on Visualization and Computer Graphics (TVCG), 13(5):953--965, 2007.
[158]
Li, H., Lo, K.-Y., Leung, M.-K., and Fu, C.-W. Dual Poisson-disk tiling: An efficient method for distributing features on arbitrary surfaces. IEEE Transactions on Visualization and Computer Graphics (TVCG),???? Accepted for publication.
[159]
Lo, K.-Y., Li, H., Fu, C.-W., and Wong, T.-T. Interactive reaction-diffusion on surface tiles. In Proceedings of Pacific Graphics 2007, pages 65--74. 2007.
[160]
Lu, A. and Ebert, D. S. Example-based volume illustrations. In Proceedings of IEEE Visualization, pages 655--662. 2005.
[161]
Lu, A., Ebert, D. S., Qiao, W., Kraus, M., and Mora, B. Volume illustration using Wang cubes. 26(2), 2007.
[162]
Lukkarila, V. The square tiling problem is NP-complete for deterministic tile sets. Technical Report TUCS Technical Report No 754, Turku Centre for Computer Science, 2006.
[163]
MacMahon, M. P. A. New mathematical pastimes. Cambridge University Press, 1921.
[164]
Neyret, F. and Cani, M.-P. Pattern-based texturing revisited. In Proceedings of ACM SIGGRAPH 1999, pages 235--242. 1999.
[165]
Ng, T.-Y., Wen, C., Tan, T.-S., Zhang, X., and Kim, Y. J. Generating an ω-tile set for texture synthesis. In Proceedings of Computer Graphics International 2005, pages 177--184. 2005.
[166]
Ostromoukhov, V. Sampling with polyominoes. ACM Transactions on Graphics, 26(3), 2007.
[167]
Ostromoukhov, V., Donohue, C., and Jodoin, P.-M. Fast hierarchical importance sampling with blue noise properties. ACM Transactions on Graphics, 23(3):488--495, 2004.
[168]
Penrose, R. The rôle of aesthetics in pure and applied mathematical research. Bulletin of the Institute of Mathematics and its Applications, 10:266--271, 1974.
[169]
Robinson, R. M. Seven polygons which admit only nonperiodic tilings of the plane (abstract). Notices of the American Mathematical Society, 14:835, 1967.
[170]
Saladin, H. L'Alhambra de Grenade. Morance, Paris, France, 1926.
[171]
Shade, J., Cohen, M. F., and Mitchell, D. P. Tiling layered depth images. Technical report, University of Washington, Department of Computer Science and Engineering, 2000.
[172]
Sibley, P., Montgomery, P., and Marai, G. E. Wang cubes for video synthesis and geometry placement. In ACM SIGGRAPH 2004 Poster Compendium. 2004.
[173]
Stam, J. Aperiodic texture mapping. Technical Report ERCIM-01/97-R046, European Research Consortium for Informatics and Mathematics (ECRIM), 1997.
[174]
Wang, H. Proving theorems by pattern recognition - II. Bell Systems Technical Journal, 40:1--42, 1961.
[175]
Wang, H. Games, logic and computers. Scientific American, 213(5):98--106, 1965.
[176]
Wang, H. Notes on a class of tiling problems. Fundamenta Mathematicae, 82:295--305, 1975.
[177]
Wei, L.-Y. Tile-based texture mapping on graphics hardware. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, pages 55--63. 2004.
[178]
Xu, J. and Kaplan, C. S. Vortex maze construction. Journal of Mathematics and the Arts, 1(1):7--20, 2007. A shorter version appeared in the proceedings of Bridges 2006.

Cited By

View all
  • (2024)Taming Reversible Halftoning Via Predictive LuminanceIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.327869130:8(4841-4852)Online publication date: Aug-2024
  • (2018)Tile-based Pattern Design with Topology ControlProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/32032041:1(1-15)Online publication date: 25-Jul-2018
  • (2018)Memory-Efficient and Accurate Sampling for Counting Local Triangles in Graph StreamsACM Transactions on Knowledge Discovery from Data10.1145/302218612:1(1-28)Online publication date: 31-Jan-2018
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGGRAPH '08: ACM SIGGRAPH 2008 classes
August 2008
5354 pages
ISBN:9781450378451
DOI:10.1145/1401132
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 August 2008

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article

Conference

SIGGRAPH '08
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,822 of 8,601 submissions, 21%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)14
  • Downloads (Last 6 weeks)5
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Taming Reversible Halftoning Via Predictive LuminanceIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.327869130:8(4841-4852)Online publication date: Aug-2024
  • (2018)Tile-based Pattern Design with Topology ControlProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/32032041:1(1-15)Online publication date: 25-Jul-2018
  • (2018)Memory-Efficient and Accurate Sampling for Counting Local Triangles in Graph StreamsACM Transactions on Knowledge Discovery from Data10.1145/302218612:1(1-28)Online publication date: 31-Jan-2018
  • (2017)DualBlinkProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/30533301:1(1-19)Online publication date: 30-Mar-2017
  • (2016)Dynamic furniture modeling through assembly instructionsACM Transactions on Graphics10.1145/2980179.298241635:6(1-15)Online publication date: 5-Dec-2016
  • (2016)Structure-oriented networks of shape collectionsACM Transactions on Graphics10.1145/2980179.298240935:6(1-14)Online publication date: 5-Dec-2016
  • (2016)Simulating the structure and texture of solid woodACM Transactions on Graphics10.1145/2980179.298025535:6(1-11)Online publication date: 5-Dec-2016
  • (2016)Temporally coherent sculpture of composite objectsComputers and Graphics10.1016/j.cag.2016.05.01158:C(118-127)Online publication date: 1-Aug-2016
  • (2015)Application of Domain-aware Binary Fuzzing to Aid Android Virtual Machine TestingACM SIGPLAN Notices10.1145/2817817.273119850:7(121-132)Online publication date: 14-Mar-2015
  • (2015)Towards VM Consolidation Using a Hierarchy of Idle StatesACM SIGPLAN Notices10.1145/2817817.273119550:7(107-119)Online publication date: 14-Mar-2015
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media