[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/1367497.1367609acmconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
research-article

Learning deterministic regular expressions for the inference of schemas from XML data

Published: 21 April 2008 Publication History

Abstract

Inferring an appropriate DTD or XML Schema Definition (XSD) for a given collection of XML documents essentially reduces to learning deterministic regular expressions from sets of positive example words. Unfortunately, there is no algorithm capable of learning the complete class of deterministic regular expressions from positive examples only, as we will show. The regular expressions occurring in practical DTDs and XSDs, however, are such that every alphabet symbol occurs only a small number of times. As such, in practice it suffices to learn the subclass of regular expressions in which each alphabet symbol occurs at most k times, for some small k. We refer to such expressions as k-occurrence regular expressions (k-OREs for short). Motivated by this observation, we provide a probabilistic algorithm that learns k-OREs for increasing values of k, and selects the one that best describes the sample based on a Minimum Description Length argument. The effectiveness of the method is empirically validated both on real world and synthetic data. Furthermore, the method is shown to be conservative over the simpler classes of expressions considered in previous work.

References

[1]
Castor. www.castor.org.
[2]
SUN Microsystems JAXB. java.sun.com/webservices/jaxb.
[3]
P. Adriaans and P. Vitanyi. The Power and Perils of MDL, 2006.
[4]
H. Ahonen. Generating Grammars for Structured Documents using Grammatical Inference Methods. Report A-1996-4, Dept. of Comp. Sci., Univ. of Finland, 1996.
[5]
D. Angluin and C. Smith. Inductive Inference: Theory and Methods. ACM Computing Surveys, 15(3):237--269, 1983.
[6]
D. Barbosa, L. Mignet, and P. Veltri. Studying the XML Web: Gathering Statistics from an XML Sample. World Wide Web, 8(4):413--438, 2005.
[7]
M. Benedikt, W. Fan, and F. Geerts. XPath Satisfiability in the Presence of DTDs. In PODS, pages 25--36, 2005.
[8]
P. A. Bernstein. Applying Model Management to Classical Meta Data Problems. In CIDR, 2003.
[9]
G. Bex, W. Gelade, F. Neven, and S. Vansummeren. Learning Deterministic Regular Expressions for the Inference of Schemas from XML Data, 2007. http://www.uhasselt.be/~lucg5855/papers/infkore.pdf
[10]
G. J. Bex, F. Neven, T. Schwentick, and K. Tuyls. Inference of Concise DTDs from XML Data. In VLDB, 2006.
[11]
G. J. Bex, F. Neven, and J. Van den Bussche. DTDs versus XML Schema: a Practical Study. In WebDB, pages 79--84, 2004.
[12]
G. J. Bex, F. Neven, and S. Vansummeren. Inferring XML Schema Definitions from XML data. In VLDB, pages 998--1009, 2007.
[13]
A. Bräzma. Efficient Identification of Regular Expressions from Representative Examples. In COLT, pages 236--242. ACM Press, 1993.
[14]
A. Brüggeman-Klein. Regular Expressions into Finite Automata. Theor. Comput. Sci., 120(2):197--213, 1993.
[15]
A. Brüggemann-Klein and D. Wood. One-unambiguous Regular Languages. Information and computation, 140(2):229--253, 1998.
[16]
P. Buneman, S. B. Davidson, M. F. Fernandez, and D. Suciu. Adding Structure to Unstructured Data. In ICDT, pages 336--350, 1997.
[17]
P. Caron and D. Ziadi. Characterization of Glushkov Automata. Theo. Comp. Sc., 233(1-2):75--90, 2000.
[18]
D. Che, K. Aberer, and M. T. Özsu. Query Optimization in XML Structured-Document Databases. VLDB J., 15(3):263--289, 2006.
[19]
B. Chidlovskii. Schema Extraction from XML: a Grammatical Inference Approach. In KRDB, 2001.
[20]
J. Clark. Trang: Multi-format Schema Converter. http://www.thaiopensource.com/relaxng/trang.html.
[21]
J. Clark and M. Murata. RELAX NG Specification. OASIS, December 2001.
[22]
R. Cover. The Cover Pages. http://xml.coverpages.org/, 2003.
[23]
J. F. Fang Du, Sihem Amer-Yahia. ShreX: Managing XML Documents in Relational Databases. In VLDB, pages 1297--1300, 2004.
[24]
H. Fernau. Algorithms for Learning Regular Expressions. In ALT, pages 297--311, 2005.
[25]
R. Finn, J. Mistry, B. Schuster-Böckler, S. Griffiths-Jones, et al. Pfam: Clans, Web Tools and Services. Nucleic Acids Research, 34:D247--D251, 2006.
[26]
D. Florescu. Managing Semi-structured Data. ACM Queue, 3(8), October 2005.
[27]
J.-M. François. Jahmm. http://www.run.montefiore.ulg.ac.be/~francois/software/jahmm/, April 2006.
[28]
J. Freire, J. R. Haritsa, M. Ramanath, P. Roy, and J. Siméon. StatiX: Making XML Count. In SIGMOD, pages 181--191, 2002.
[29]
D. Freitag and A. McCallum. Information Extraction with HMM Structures Learned by Stochastic Optimization. In AAAI/IAAI, pages 584--589, 2000.
[30]
P. Garcia and E. Vidal. Inference of k-Testable Languages in the Strict Sense and Application to Syntactic Pattern Recognition. IEEE Trans. Pattern Anal. Mach. Intell., 12(9):920--925, 1990.
[31]
M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim. XTRACT: Learning Document Type Descriptors from XML Document Collections. Data Mining and Knowledge Discovery, 7:23--56, 2003.
[32]
E. Gold. Language Identification in the Limit. Information and Control, 10(5):447--474, May 1967.
[33]
R. Goldman and J. Widom. DataGuides: Enabling Query Formulation and Optimization in Semistructured Databases. In VLDB, pages 436--445, 1997.
[34]
J. Hegewald, F. Naumann, and M. Weis. XStruct: Efficient Schema Extraction from Multiple and Large XML Documents. In ICDE Workshops, page 81, 2006.
[35]
J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading, MA, 2007.
[36]
C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier. Schema-based Scheduling of Event Processors and Buffer Minimization for Queries on Structured Data Streams. In VLDB, pages 228--239, 2004.
[37]
I. Manolescu, D. Florescu, and D. Kossmann. Answering XML Queries on Heterogeneous Data Sources. In VLDB, pages 241--250, 2001.
[38]
W. Martens, F. Neven, T. Schwentick, and G. J. Bex. Expressiveness and Complexity of XML Schema. ACM TODS, 31(3), 2006.
[39]
L. Mignet, D. Barbosa, and P. Veltri. The XML Web: A First Study. In WWW, pages 500--510, 2003.
[40]
M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of xml schema languages using formal language theory. ACM Trans. Internet Techn., 5(4):660--704, 2005.
[41]
S. Nestorov, S. Abiteboul, and R. Motwani. Extracting Schema from Semistructured Data. In ICDM, pages 295--306. 1998.
[42]
F. Neven and T. Schwentick. On the Complexity of XPath Containment in the Presence of Disjunction, DTDs, and Variables. Logical Methods in Computer Science, 2(3), 2006.
[43]
L. Pitt. Inductive Inference, DFAs, and Computational Complexity. In AII, pages 18--44, 1989.
[44]
D. Quass, J. Widom, R. Goldman, et al. LORE: a Lightweight Object REpository for Semistructured Data. In SIGMOD, page 549, 1996.
[45]
L. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proc. IEEE, 77(2):257--286, 1989.
[46]
E. Rahm and P. A. Bernstein. A Survey of Approaches to Automatic Schema Matching. VLDB J., 10(4):334--350, 2001.
[47]
A. Sahuguet. Everything You Ever Wanted to Know about DTDs, but Were Afraid to Ask. In WebDB, 2000.
[48]
Y. Sakakibara. Recent Advances of Grammatical Inference. Theor. Comput. Sci., 185(1):15--45, 1997.
[49]
J. Sankey and R. K. Wong. Structural Inference for Semistructured Data. In CIKM, pages 159--166. 2001.
[50]
H. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part 1: Structures. W3C, May 2001.
[51]
M. Young-Lai and F. W. Tompa. Stochastic Grammatical Inference of Text Database Structure. Machine Learning, 40(2):111--137, 2000.

Cited By

View all
  • (2019)Learning Restricted Deterministic Regular Expressions with CountingWeb Information Systems Engineering – WISE 201910.1007/978-3-030-34223-4_7(98-114)Online publication date: 29-Oct-2019
  • (2019)Learning a Subclass of Deterministic Regular Expression with CountingKnowledge Science, Engineering and Management10.1007/978-3-030-29551-6_29(341-348)Online publication date: 21-Aug-2019
  • (2018)Machine Learning to Data Management: A Round Trip2018 IEEE 34th International Conference on Data Engineering (ICDE)10.1109/ICDE.2018.00226(1735-1738)Online publication date: Apr-2018
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
WWW '08: Proceedings of the 17th international conference on World Wide Web
April 2008
1326 pages
ISBN:9781605580852
DOI:10.1145/1367497
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 21 April 2008

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. XML
  2. regular expressions
  3. schema inference

Qualifiers

  • Research-article

Conference

WWW '08
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2019)Learning Restricted Deterministic Regular Expressions with CountingWeb Information Systems Engineering – WISE 201910.1007/978-3-030-34223-4_7(98-114)Online publication date: 29-Oct-2019
  • (2019)Learning a Subclass of Deterministic Regular Expression with CountingKnowledge Science, Engineering and Management10.1007/978-3-030-29551-6_29(341-348)Online publication date: 21-Aug-2019
  • (2018)Machine Learning to Data Management: A Round Trip2018 IEEE 34th International Conference on Data Engineering (ICDE)10.1109/ICDE.2018.00226(1735-1738)Online publication date: Apr-2018
  • (2015)Learning to identify concise regular expressions that describe email campaignsThe Journal of Machine Learning Research10.5555/2789272.291211416:1(3687-3720)Online publication date: 1-Jan-2015
  • (2015)SCULPTProceedings of the 24th International Conference on World Wide Web10.1145/2736277.2741142(702-720)Online publication date: 18-May-2015
  • (2015)Discovering Anomalies and Root Causes in Applications via Relevant Fields AnalysisProceedings of the 2015 IEEE International Conference on Data Mining Workshop (ICDMW)10.1109/ICDMW.2015.68(1664-1667)Online publication date: 14-Nov-2015
  • (2015)Optimal Probabilistic Generation of XML DocumentsTheory of Computing Systems10.1007/s00224-014-9581-557:4(806-842)Online publication date: 1-Nov-2015
  • (2013)Server interface descriptions for automated testing of JavaScript web applicationsProceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering10.1145/2491411.2491421(510-520)Online publication date: 18-Aug-2013
  • (2013)Optimizing XML querying using type-based document projectionACM Transactions on Database Systems10.1145/2445583.244558738:1(1-45)Online publication date: 26-Apr-2013
  • (2013)The quality of the XML WebWeb Semantics: Science, Services and Agents on the World Wide Web10.1016/j.websem.2012.12.00119(59-68)Online publication date: 1-Mar-2013
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media