[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/1283920.1283938acmotherbooksArticle/Chapter ViewAbstractPublication PagesBookacm-pubtype
chapter
Free access

An overview of computational complexity

Published: 01 January 2007 Publication History

Abstract

An historical overview of computational complexity is presented. Emphasis is on the fundamental issues of defining the intrinsic computational complexity of a problem and proving upper and lower bounds on the complexity of problems. Probabilistic and parallel computation are discussed.

References

[1]
Adleman, L. Two theorems on random polynomial time. Proc. 19th IEEE Symp. on Foundations of Computer Science. IEEE Computer Society, Los Angeles (1978), 75--83.
[2]
Adleman, L., Pomerance, C., and Rumley, R. S. On distinguishing prime numbers from composite numbers. Annals of Math 117 {January 1983), 173--206.
[3]
Aho, A. V., Hopcroft, J. E., and Ullman, J. D. The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading, Mass., 1974.
[4]
Bennett, J. H. On Spectra. Doctoral dissertation, Department of Mathematics, Princeton University, 1962.
[5]
Berlekamp, E. R. Factoring polynomials over large finite fields. Math. Comp. 24 (1970), 713--735.
[6]
Blum, M. A machine independent theory of the complexity of recursire functions. JACM 14, 2 (April 1967), 322--336.
[7]
Blum, M., and Micali, S. How to generate cryptographically strong sequences of pseudo random bits. Proc. 23rd IEEE Symp. on Foundations of Computer Science. IEEE Computer Society, Los Angeles (1982), 112--117.
[8]
Borodin, A. On relating time and space to size and depth. SIAMJ. Comp. 6 (1977), 733--744.
[9]
Borodin, A. Structured vs. general models in computational complexity. In Logic and Algorithmic, Monographie no. 30 de L'Enseignement Mathematique Universitéde Genève, 1982.
[10]
Borodin, A., and Cook, S. A time-space tradeoff for sorting on a general sequential model of computation. SIAM J. Comput. 11 (1982), 287--297.
[11]
Borodin, A., von zur Gathen, J., and Hopcroft, J. Fast parallel matrix and GCD computations. 23rd IEEE Symp. on Foundations of Computer Science. IEEE Computer Society, Los Angeles (1982), 65--71.
[12]
Borodin, A., and Munro, I. The Computational Complexity of Algebraic and Numeric Problems. Elsevier, New York, 1975.
[13]
Brockett, R. W., and Dobkin, D. On the optimal evaluation of a set of bilinear forms. Linear Algebra and Its Applications 19 {1978}, 207--235.
[14]
Chaitin, G. J. On the length of programs for computing finite binary sequences. JACM 13, 4 {October 1966), 547--569; JACM 16, 1 (January 1969), 145--159,
[15]
Chaitin, G. J. A theory of program size formally identical to informational theory. JACM 22, 3 (July 1975), 329--340.
[16]
Cobham, A. The intrinsic computational difficulty of functions. Proc. 1964 International Congress for Logic, Methodology, and Philosophy of Sciences. Y. Bar-Hellel, Ed., North Holland, Amsterdam, 1965, 24--30.
[17]
Cobham, A. The recognition problem for the set of perfect squares. IEEE Conference Record Seventh SWAT (1966), 78--87.
[18]
Cohen, H., and Lenstra, H. W., Jr. Primarily testing and Jacobi sums. Report 82--18, University of Amsterdam, Dept. of Math., 1982.
[19]
Cook, S. A. The complexity of theorem proving procedures. Proc. 3rd ACM Symp. on Theory of Computing. Shaker Heights, Ohio (May 3--5, 1971), 151--158.
[20]
Cook, S. A. Linear time simulation of deterministic two-way pushdown automata. Proc. IFIP Congress 71 (Theoretical Foundations). North Holland, Amsterdam, 1972, 75--80.
[21]
Cook, S. A. An observation on time-storage tradeoff. JCSS 9 (1974), 308--316. Originally in Proc. 5th ACM Symp. on Theory of Computing, Austin, TX (April 30-May 2 1973), 29--33.
[22]
Cook, S. A. Towards a complexity theory of synchronous parallel computation. L'Enseignement Mathematique XXVII (1981), 99--124.
[23]
Cook, S. A., and Aanderaa, S. O. On the minimum computation time of functions. Trans. AMS 142 (1969), 291--314.
[24]
Cooley, J. M., and Tukey, J. W. An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19 (1965), 297--301.
[25]
Coppersmith, D., and Winograd, S. On the asymptomatic complexity of matrix multiplication. SIAM J. Comp. 11 (1982), 472--492.
[26]
Diffie, W., and Hellman, M. E. New direction in cryptography. IEEE Trans. on Inform. Theory IT-22, 6 (1976), 644--654.
[27]
Dobkin, D., Lipton, R. J., and Reiss, S. Linear programming is log-space hard for P. Inf. Processing Letters 8 (1979), 96--97.
[28]
Edmonds, J. Paths, trees, flowers. Canad. J. Math. 17 (1965), 449--67.
[29]
Edmonds, J. Minimum partition of a matroid into independent subsets. J. Res. Nat. Bur. Standards Sect. B, 69 (1965), 67--72.
[30]
Ferrante, J., and Rackoff, C. W. The Computational Complexity of Logical Theories. Lecture Notes in Mathematics. #718, Springer Verlag, New York, 1979.
[31]
Fischer, M. J., and Rabin, M. O. Super-exponential complexity of Presburger arithmetic. In Complexity of Computation. SIAM-AMS Proc. 7, R. Karp, Ed., 1974, 27--42.
[32]
Garey, M. R., and Johnson, D. S. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, San Francisco, 1979.
[33]
Gill, J. Computational complexity of probabilistic Turing machines. SIAM J. Comput. 6 (1977), 675--695.
[34]
Goldschlager, L. M. Synchronous Parallel Computation. Doctoral dissertation, Dept. of Computer Science, Univ. of Toronto, 1977. See also JACM 29, 4 (October 1982), 1073--1086.
[35]
Goldschlager, L. M., Shaw, R. A., and Staples, J. The maximum flow problem is log space complete for P. Theoretical Computer Science 21 (1982), 105--111.
[36]
Grzegorczyk, A. Some classes of recursive functions. Rozprawy Matemtyczne, 1953.
[37]
Hartmanis, J. Observations about the development of theoretical computer science. Annals Hist. Comput. 3, 1 (Jan. 1981), 42--51.
[38]
Hartmanis, J., and Stearns, R. E. On the computational complexity of algorithms. Trans. AMS 117 (1965), 285--306.
[39]
Jones, N. D., and Laaser, W. T. Complete problems for deterministic polynomial time. Theoretical Computer Science 3 (1977), 105--427.
[40]
Kaltofen, E. A polynomial reduction from multivariate to bivariate integer polynomial factorization. Proc. 14th ACM Symp. in Theory Comp., San Francisco, CA (May 5--7 1982), 261--266.
[41]
Kaltofen, E. A polynomial-time reduction from bivariate to univariate integral polynomial factorization. Proc. 23rd IEEE Symp. on Foundations of Computer Science. IEEE Computer Society, Los Angeles (1982), 57--64.
[42]
Karatsuba, A., and Ofman, Yu. Multiplication of multidigit numbers on automata. Doklady Akad. Nauk 145, 2 (1962), 293--294. Translated in Soviet Phys. Doklady 77 (1963), 595--596.
[43]
Karp, R. M. Reducibility among combinatorial problems. In: Complexity of Computer Computations. R. E. Miller and J. W. Thatcher, Eds., Plenum Press, New York, 1972, 85--104.
[44]
Khachian, L. G. A polynomial time algorithm for linear programming. Doklady Akad. Nauh SSSR. 244, 5(1979), 1093--96. Translated in Soviet Math. Doklady 20, 191--194.
[45]
Knuth, D. E. The Art of Computer Programming, vol. 3. Sorting and Searching. Addison-Wesley, Reading, MA, 1973.
[46]
Kolmogorov, A. N. Three approaches to the concept of the amount of information. Probl. Pered. Inf. (Probl. of Inf Transm.) 1 (1965).
[47]
Kolmogorov, A. N., and Uspenski, V. A. On the definition of an algorithm, Uspehi Mat. Nauk. 13 (1958), 3--28: AMS Transl. 2nd ser. 29 (1963), 217--245.
[48]
Ladner, R. E. The circuit value problem is log space complete for P. SIGACT News 7, 1 (1975), 18--20.
[49]
Lenstra, A. K., Lenstra, H. W., and Lovasz, L. Factoring polynomials with rational coefficients. Report 82-05, University of Amsterdam, Dept. of Math., 1982.
[50]
Levin, L. A. Universal search problems. Problemy Peredaci lnformacii 9 (1973), 115--116. Translated in Problems of Information Transmission 9, 265--266.
[51]
Luks, E. M. Isomorphism of graphs of bounded valence can be tested in polynomial time. Proc. 21st IEEE Symp. on Foundations of Computer Science. IEEE Computer Society, Los Angeles (1980), 42--49.
[52]
Meyer, A. R. Weak monadic second-order theory of successor is not elementary-recursive. Lecture Notes in Mathematics 453. Springer Verlag, New York, 1975, 132--154.
[53]
Meyer, A. R., and Stockmeyer, L. J. The equivalence problem for regular expressions with squaring requires exponential space. Proc. 13th IEEE Symp. on Switching and Automata Theory (1972), 125--129.
[54]
Miller, G. L. Riemann's hypothesis and tests for primality. J. Comput. System Sci. 13 (1976), 300--317.
[55]
Oppen, D. C. A 222p upper bound on the complexity of Presburger arithmetic. J. Comput. Syst. Sci. 16 (1978), 323--332.
[56]
Papadimitriou, C. H., and Steiglitz, K. Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Englewood Cliffs, NJ, 1982.
[57]
Paterson, M. S., Fischer, M. J., and Meyer, A. R. An improved overlap argument for on-line multiplication. SIAM-AMS Proc. 7, Amer. Math. Soc., Providence, 1974, 97--111.
[58]
Pippenger, N. On simultaneous resource bounds (preliminary version). Proc. 20th IEEE Symp. on Foundations of Computer Science. IEEE Computer Society, Los Angeles {1979), 307--311.
[59]
Pippenger, N. J., and Fischer, M. J. Relations among complexity measures. JACM 26, 2 (April 1979), 361--381.
[60]
Pratt, V. R., and Stockmeyer, L. J. A characterization of the power of vector machines. J. Comput. System Sci. 12 (1976), 198--221. Originally in Proc. 6th ACM Symp. on Theory of Computing, Seattle, WA (April 30-May 2, 1974), 122--134.
[61]
Rabin, M. O. Speed of computation and classification of recursive sets. Third Convention Sci. Soc., Israel, 1959, 1--2.
[62]
Rabin, M. O. Degree of difficulty of computing a function and a partial ordering of recursive sets. Tech. Rep. No. 1, O.N.R., Jerusalem, 1950.
[63]
Rabin, M. O. Probabilistic algorithms. In Algorithms and Complexity, New Directions and Recent Trends, J. F. Traub, Ed., Academic Press, New York, 1976, 29--39.
[64]
Rabin, M. O. Complexity of computations. Comm. ACM 20, 9 (September 1977), 625--633.
[65]
Reif, J. H. Symmetric complementation. Proc. 14th ACM Symp. on Theory of Computing, San Francisco, CA (May 5--7, 1982), 201--214.
[66]
Reisch, S., and Schnitger, G. Three applications of Kolmorgorov complexity. Proc. 23rd IEEE Symp. on Foundations of Computer Science. IEEE Computer Society, Los Angeles (1982), 45--52.
[67]
Ritchie, R. W. Classes of Recursive Functions of Predictable Complexity. Doctoral Dissertation, Princeton University, 1960.
[68]
Ritchie, R. W. Classes of predictably computable functions. Trans. AMS 106 (1963), 139--173.
[69]
Rivest, R. L., Shamir, A., and Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Comm. ACM 21, 2 (February 1978), 120--126.
[70]
Ruzzo, W. L. On uniform circuit complexity. J. Comput. System Sci. 22 (1981), 365--383.
[71]
Savage, J. E. The Complexity of Computing. Wiley, New York, 1976.
[72]
Schnorr, C. P. The network complexity and the Turing machine complexity of finite functions. Acta Informatica 7 (1976), 95--107.
[73]
SchSnhage, A. Storage modification machines. SIAM J. Comp. 9 (1980), 490--508.
[74]
Schönhage, A., and Strassen. V. Schnelle Multiplication grosser Zahlen. Computing 7 (1971), 281--292.
[75]
Schwartz, J. T. Probabilistic algorithms for verification of polynomial identities. JACM 27, 4 (October 1980), 701--717.
[76]
Schwartz, J. T. Ultracomputers. ACM Trans. on Prog. Languages and Systems 2, 4 (October 1980), 484--521.
[77]
Shamir, A. On the generation of cryptographically strong pseudo random sequences. 8th Int. Colloquium on Automata, Languages, and Programming (July 1981). Lecture Notes in Computer Science 115. Springer Verlag, New York, 544--550.
[78]
Shannon, C. E. The synthesis of two terminal switching circuits. BST28 (1949), 59--98.
[79]
Smale, S. On the average speed of the simplex method of linear programming. Preprint, 1982.
[80]
Smale, S. The problem of the average speed of the simplex method. Preprint, 1982.
[81]
Solovay, R., and Strassen, V. A fast monte-carlo test for primality. SlAM J. Comput. 6 (1977), 84--85.
[82]
Stearns, R. E., Hartmanis, J., and Lewis, P. M. II Hierarchies of memory limited computations. 6th IEEE Symp. on Switching Circuit Theory and Local Design (1965), 179--190.
[83]
Stockmeyer, L. J. The complexity of decision problems in automata theory and logic. Doctoral Thesis, Dept. of Electrical Eng., MIT, Cambridge, MA., 1974; Report TR-133, MIT, Laboratory for Computing Science.
[84]
Stockmeyer, L. J. Classifying the computational complexity of problems. Research Report RC 7606 (1979), Math. Sciences Dept., IBM TJ. Watson Research Center, Yorktown Heights, N.Y.
[85]
Strassen, V. Gaussian elimination is not optimal. Num. Math. 13 (1969), 354--356.
[86]
Strassen, V. Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten. Numer. Math. 20 (1973), 238--251.
[87]
Baur, W., and Strassen, V. The complexity of partial derivatives. Preprint, 1982.
[88]
Toom, A. L. The complexity of a scheme of functional elements realizing the multiplication of integers. Doklady Akad. Nauk. SSSR 150, 3 (1963), 496--498. Translated in Souiet Math. Doklady 3 (1963), 714--716.
[89]
Turing, A. M. On computable numbers with an application to the Entscheidnungsproblem. Proc. London Math. Soc. ser. 2, 42 (1963--7), 230--265. A correction, ibid. 43 (1937), 544--546.
[90]
Valiant, L. G. The complexity of enumeration and reliability problems. SIAM J. Comput. 8 (1979), 189--202.
[91]
Valiant, L. G. The complexity of computing the permanent. Theoretical Computer Science 8 (1979), 189--202.
[92]
Valiant, L. G. Parallel computation. Proc. 7th IBM J. apan Symp. Academic 6 Scientific Programs, IBM Japan, Tokyo (1982).
[93]
Valiant, L. G., Skyum, S., Berkowitz, S., and Rackoff, C. Fast parallel computation on polynomials using few processors. Preprint (Preliminary version in Springer Lecture Notes in Computer Science 118 (1981), 132--139.
[94]
von Neumann, J. A certain zero-sum two-person game equivalent to the optimal assignment problem. Contributions to the Theory of Games II. H. W. Kahn and A. W. Tucker, Eds. Princeton Univ. Press, Princeton, N.J. 1953.
[95]
Yamada, H. Real time computation and recursive functions not real-time computable. IRE Transactions on Electronic Computers EC-11 (1962), 753--760.
[96]
Yao, A. C. Theory and applications of trapdoor functions (extended abstract). Proc. 23rd IEEE Symp. on Foundations of Computer Science. IEEE Computer Society, Los Angeles (1982), 80--91.

Cited By

View all
  • (2022)Empirical analysis of the impact of queries on watermarked relational databasesExpert Systems with Applications10.1016/j.eswa.2022.117491204(117491)Online publication date: Oct-2022
  • (2022)A Genetic Algorithm Based Artificial Neural Network for Production Rescheduling ProblemIntegrated Uncertainty in Knowledge Modelling and Decision Making10.1007/978-3-030-98018-4_23(279-290)Online publication date: 4-Mar-2022

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other Books
ACM Turing award lectures
January 2007
396 pages
ISBN:9781450310499
DOI:10.1145/1283920

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 January 2007

Permissions

Request permissions for this article.

Author Tags

  1. NP-completeness
  2. computational complexity
  3. fast fourier transform
  4. monte carlo algorithm

Qualifiers

  • Chapter

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)564
  • Downloads (Last 6 weeks)75
Reflects downloads up to 23 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2022)Empirical analysis of the impact of queries on watermarked relational databasesExpert Systems with Applications10.1016/j.eswa.2022.117491204(117491)Online publication date: Oct-2022
  • (2022)A Genetic Algorithm Based Artificial Neural Network for Production Rescheduling ProblemIntegrated Uncertainty in Knowledge Modelling and Decision Making10.1007/978-3-030-98018-4_23(279-290)Online publication date: 4-Mar-2022

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media