[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/1277548.1277587acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
Article

Computing the eigenvalue in the schoof-elkies-atkin algorithm using abelian lifts

Published: 29 July 2007 Publication History

Abstract

The Schoof-Elkies-Atkin algorithm is the best known method for counting the number of points of an elliptic curve defined over a finite field of large characteristic. We use Abelian properties of division polynomials to design a fast theoretical and practical algorithm for nding the eigenvalue.

References

[1]
A.O.L. Atkin. The number of points on an elliptic curve modulo a prime (II). Available at http://listserv.nodak.edu/archives/nmbrthry.html July 1992.
[2]
I. Blake, G. Seroussi, and N. Smart. Elliptic curves in cryptography volume 265 of London Math. Soc. Lecture Note Ser. Cambridge University Press, 1999.
[3]
A. Bostan, F. Morain, B. Salvy, and É. Schost. Fast algorithms for computing isogenies between elliptic curves, 2006.
[4]
R.P. Brent and H.T. Kung. Fast algorithms for manipulating formal power series. J. ACM 25(4):581--595, 1978.
[5]
D.G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta Informatica 28(7):693--701, 1991.
[6]
D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9(3):251--280, 1990.
[7]
J.-M. Couveignes, L. Dewaghe, and F. Morain. Isogeny cycles and the Schoof-Elkies-Atkin algorithm. Research Report LIX/RR/96/03, LIX, Apr. 1996. Available at http://www.lix.polytechnique.fr/Labo/Francois.Morain/
[8]
J.-M. Couveignes and F. Morain. Schoof's algorithm and isogeny cycles. In L. Adleman and M.-D. Huang, editors, Algorithmic Number Theory volume 877 of Lecture Notes in Comput. Sci. pages 43--58. Springer-Verlag, 1994. 1st Algorithmic Number Theory Symposium-Cornell University, May 6-9, 1994.
[9]
L. Dewaghe. Calcul du nombre de points sur une courbe elliptique dans un corps fini Thèse, Université des Sciences et Technologies de Lille, Dec. 1996.
[10]
L. Dewaghe. Remarks on the Schoof-Elkies-Atkin algorithm. Math. Comp.67(223):1247--1252, July 1998.
[11]
N.D. Elkies. Explicit isogenies. Draft, 1992.
[12]
N.D. Elkies. Elliptic and modular curves over finite fields and related computational issues. In Computational Perspectives on Number Theory: Proceedings of a Conference in Honor of A. O. L. Atkin volume 7 of AMS/IP Studies in Advanced Mathematics pages 21--76. AMS, International Press, 1998.
[13]
A. Enge. Computing modular polynomials in quasi-linear time, 2006.
[14]
J. von zur Gathen and J. Gerhard. Modern Computer Algebra Cambridge University Press, 1999.
[15]
J. von zur Gathen and V. Shoup. Computing Frobenius maps and factoring polynomials. Comput. Complexity 2(3):187--224, 1992.
[16]
P. Gaudry and F. Morain. Fast algorithms for computing the eigenvalue in the Schoof-Elkies-Atkin algorithm. In ISSAC'06 pages 109--115. ACM Press, 2006.
[17]
E. Kaltofen and V. Shoup. Subquadratic-time factoring of polynomials over finite fields. Math. Comput. 67(223):1179--1197, 1998.
[18]
H.W.J. Lenstra. Galois theory and primality testing. In Orders and their applications volume 1142 of Lecture Notes in Mathematics pages 1--21. Springer Verlag, 1985.
[19]
M. Maurer and V. Müller. Finding the eigenvalue in Elkies' algorithm. Experiment. Math. 10(2):275--285, 2001.
[20]
P. Mihailescu. Cyclotomy primality proofs and their certificates. Mathematica Goettingensis, 2006.
[21]
P. Mihailescu. Elliptic curve Gauss sums and counting points. Mathematica Goettingensis, 2006.
[22]
F. Morain. Calcul du nombre de points sur une courbe elliptique dans un corps fini: aspects algorithmiques. J. Théor. Nombres Bordeaux 7:255--282, 1995.
[23]
C. Pascal and É. Schost.Change of order for bivariate triangular sets. In ISSAC'06 pages 277--284. ACM Press, 2006.
[24]
F. Rouillier. Solving zero-dimensional systems through the Rational Univariate Representation. Appl. Alg. in Eng. Comm. Comput. 9(5):433--461, 1999.
[25]
A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing 7:281--292, 1971.
[26]
R. Schoof. Elliptic curves over finite fields and the computation of square roots mod p Math. Comp. 44(170):483--494, 1985.
[27]
R. Schoof. Counting points on elliptic curves over finite fields. J. Théor. Nombres Bordeaux 7:219--254, 1995.
[28]
J.-P. Serre. Propriétés galoisiennes des points d'ordre ni des courbes elliptiques. Invent. Math. 15(4):259--331, 1971.
[29]
V. Shoup. Fast construction of irreducible polynomials over finite fields. J. Symbolic Comput. 17:371--391, 1994.
[30]
V. Shoup. A new polynomial factorization algorithm and its implementation. J. Symbolic Comput. 20:363--397, 1995.
[31]
V. Shoup. Efficient computation of minimal polynomials in algebraic extensions of finite fields. In ISSAC'99 pages 53--58. ACM Press, 1999.

Cited By

View all

Index Terms

  1. Computing the eigenvalue in the schoof-elkies-atkin algorithm using abelian lifts

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ISSAC '07: Proceedings of the 2007 international symposium on Symbolic and algebraic computation
    July 2007
    406 pages
    ISBN:9781595937438
    DOI:10.1145/1277548
    • General Chair:
    • Dongming Wang
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 29 July 2007

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. SEA algorithm
    2. elliptic curves
    3. finite fields

    Qualifiers

    • Article

    Conference

    ISSAC07
    Sponsor:
    ISSAC07: International Symposium on Symbolic and Algebraic Computation
    July 29 - August 1, 2007
    Ontario, Waterloo, Canada

    Acceptance Rates

    Overall Acceptance Rate 395 of 838 submissions, 47%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)4
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 14 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2022)Abelian lifts of polynomialsJournal of Number Theory10.1016/j.jnt.2022.09.008Online publication date: Oct-2022
    • (2018)Modular Composition Modulo Triangular Sets and ApplicationsComputational Complexity10.1007/s00037-013-0063-y22:3(463-516)Online publication date: 26-Dec-2018
    • (2016)Computing cardinalities of -curve reductions over finite fieldsLMS Journal of Computation and Mathematics10.1112/S146115701600026719:A(115-129)Online publication date: 26-Aug-2016
    • (2014)Computational Number Theory and CryptographyApplications of Mathematics and Informatics in Science and Engineering10.1007/978-3-319-04720-1_22(349-373)Online publication date: 29-Mar-2014
    • (2013)BibliographyHandbook of Finite Fields10.1201/b15006-22(851-1010)Online publication date: 18-Jun-2013

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media