[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/1276958.1277095acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
Article

Estimating the spectral sensitivity of a digital sensor using calibration targets

Published: 07 July 2007 Publication History

Abstract

A digital sensor which is used inside a digital camera usually responds to a range of wavelengths. The response of the sensor is proportional to the product of the irradiance falling onto the sensor and the sensitivity of the sensor integrated over all wavelengths. Knowledge of the sensor's response function is important for colorimetry and the research area of color constancy. Such data may not always be available from the manufacturer of the camera. The sensitivity of the imaging device is a result of the hardware properties of theimaging chip, the lens and filters used, and the post-processing done by the processor contained inside the camera. We will be using an evolution strategy to obtain the sensor response curves of a camera given a single image of a calibration target.

References

[1]
B. E. Bayer. Color imaging array. United States Patent No. 3, 971, 065 July 1976.
[2]
G. Buchsbaum. A spatial processor model for object colour perception. Journal of the Franklin Institute 310(1):337--350, July 1980.
[3]
P. Carvalho, A. Santos, A. Dourado, and B. Ribeiro. On the estimation of spectral data:a genetic algorithm approach. In Proceedings of the IEEE International Conference on Image Processing, Thessal oniki, Greece, October 7-10 pages 866--869. IEEE, 2001.
[4]
P. Cerveri, A. Pedotti, andN. A. Borghese. Combined evolution strategies for dynamic calibration of video-based measurement systems. IEEE Transactions on Evolutionary Computation 5(3):271--282, 2001.
[5]
C. A. C. Coello. A survey of constraint handling techniques used with evolutionary algorithms. Technical Report Lania-RI-99-04, Laboratorio Nacional de Informática Avanzada, Xalapa, Veracruz, Mexico, 1999.
[6]
C. A. C. Coello. The use of a multiobjective optimization technique to handle constraints. In A. A. O. Rodriguez, M. R. S. Ortiz, and R. S. Hermida, editors, Proceedings of the Second International Symposium on Artificial Intelligence (Adaptive Systems), Habana, Cuba pages 251--256. Institute of Cybernetics, Mathematics and Physics, Ministry of Science, Technology and Environment, July 1999.
[7]
K. Deb. An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering 186(2/4):311--338, 2000.
[8]
G. D. Finlayson. Color in perspective. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(10):1034--1038, Oct. 1996.
[9]
G. D. Finlayson, M. S. Drew, andB. V. Funt. Color constancy: generalized diagonal transforms suffice. Journal of theOptical SocietyofAmericaA 11(11):3011--3019, Nov. 1994.
[10]
G. D. Finlayson and S. D. Hordley. Color constancy at apixel. Journal of the Optical Society of AmericaA 18(2):253--264, Feb. 2001.
[11]
G. D. Finlayson, S. D. Hordley, and M. S. Drew. Removing shadows from images. In Proceedings of the European Conference on Computer Vision pages 823--836, Berlin, 2002. Springer-Verlag.
[12]
D. B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence IEEE Press, New York, 2000.
[13]
C. M. Fonseca and P. J. Fleming. Multiobjective genetic algorithms made easy:Selection, sharing and mating restriction. First IEE/IEEE International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications 414:45--52, 1995.
[14]
C. M. Fonseca and P. J. Fleming. An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation 3(1):1--16, 1995.
[15]
D. A. Forsyth. A novel approach to colour constancy. In Second International Conference on Computer Vision (Tampa, FL, Dec. 5-8)pages 9--18. IEEE Press, 1988.
[16]
Foveon Inc. X3 technology. why X3 is better, 2002.
[17]
S. B. Hamida and M. Schoenauer. An adaptive algorithm for constrained optimization problems. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and H. -P. Schwefel, editors, Proceedings of the 6th Paral l el Probl em Sol ving From Nature (PPSN VI), Paris France pages 529--538, 2000.
[18]
F. Hoffmeister and J. Sprave. Problem-independent handling of constraints by use of metric penalty functions. In L. J. Fogel, P. J. Angeline, and T. Bäck, editors, Proceedings of the Fifth Annual Conference on Evolutionary Programming (EP'96), San Diego, CA pages 289 . 294. The MIT Press, 1996.
[19]
International Commission on Illumination. Colorimetry, 2nd edition, corrected reprint. Technical Report 15. 2, International Commission on Illumination, 1996.
[20]
C. M. Johnson, A. Bhat, and W. C. Thibault. An evolutionary approach to camera-based projector calibration. In Proceedings of the Genetic and Evolutionary Computation Conference 2006, Seattle, Washington, July 8-12 pages 1871--1872. ACM, 2006.
[21]
A. F. Kuri-Morales and J. Gutiérrez-García. Penalty function methods for constrained optimization with genetic algorithms:A statistical analysis. In C. A. C. Coello, A. de Albornoz, L. E. Sucar, and O. C. Battistutti, editors, Proceedings of the 2nd Mexican International Conference on Artificial Intelligence (MICAI 2002), Merida, Yucatan, Mexico pages 108--117, Heidelberg, 2002. Springer-Verlag.
[22]
Z. Michalewicz. A survey of constraint handling techniques in evolutionary computation methods. In J. R. McDonnell, R. G. Reynolds, and D. B. Fogel, editors, Proceedings of the 4th Annual Conference on Evolutionary Programming pages 135--155, Cambridge, Massachusetts, 1995. The MIT Press.
[23]
Z. Michalewicz and M. Schoenauer. Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation 4(1):1--32, 1996.
[24]
C. Poynton. Digital Video and HDTV. Algorithms and Interfaces Morgan Kaufmann Publishers, San Francisco, CA, 2003.
[25]
I. Rechenberg. Evolutionsstrategie'94 frommann-holzboog, Stuttgart, 1994.
[26]
V. Rodehorst and O. Hellwich. Genetic algorithm sample consensus (gasac)-a parallel strategy for robust parameter estimation. In International Workshop '25 Years of RANSAC', New York, USA IEEE, June 2006.
[27]
R. Sarker, H. A. Abbass, and S. Karim. An evolutionary algorithm for constrained multiobjective optimization problems. In The 5th Australasia-Japan Joint Work-shop on Intelligent and Evolutionary Systems (AJWIS 2001), Dunedin, New Zealand pages 113--122, 2001.
[28]
H.-P. Schwefel. Evolution and Optimum Seeking John Wiley &Sons, New York, 1995.
[29]
A. E. Smith and D. W. Coit. Penalty functions. In T. Bäck, D. Fogel, and Z. Michalewicz, editors, Handbook of Evolutionary Computation page Section C 5. 2. Oxford University Press and Institute of Physics Publishing, 1997.
[30]
M. Stokes, M. Anderson, S. Chandrasekar, and R. Motta. A standard default color space for the internet-sRGB. Technical report, Version 1. 10, 1996.
[31]
D. A. G. Vieira, R. L. S. Adriano, L. Krä henbühl, and J. A. Vasconcelos. Handling constraints as objectives in a multiobjective genetic based algorithm. Journal of Microwaves and Optoelectronics 2(6):50--58, 2002.
[32]
B. A. Wandell. The synthesis and analysis of color images. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-9(1):2--13, Jan. 1987.
[33]
G. Wyszecki and W. S. Stiles. Color Science. Concepts and Methods, Quantitative Data and Formulae John Wiley & Sons, Inc., New York, second edition, 2000.
[34]
Ö. Yeniay. Penalty function methods for constrained optimization with genetic algorithms. Mathematical and Computational Applications 10(1):45--56, 2005.
[35]
Y. Zhang and Q. Ji. Camera calibration with gentic algorithms. In Proceedings of the 2001 IEEE International Conference on Robotics & Automation, Seoul, Korea, May 21-26 pages 2177--2182. IEEE, 2001.

Cited By

View all
  • (2023)Spectral Sensitivity Estimation Without a Camera2023 IEEE International Conference on Computational Photography (ICCP)10.1109/ICCP56744.2023.10233713(1-12)Online publication date: 28-Jul-2023
  • (2018)Estimation of the camera spectral sensitivity function using neural learning and architectureJournal of the Optical Society of America A10.1364/JOSAA.35.00085035:6(850)Online publication date: 2-May-2018
  • (2018)An investigation of the spectral and radiometric characteristics of low-cost digital cameras for use in UAV remote sensingInternational Journal of Remote Sensing10.1080/01431161.2018.148829739:15-16(4891-4909)Online publication date: 3-Jul-2018
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
GECCO '07: Proceedings of the 9th annual conference on Genetic and evolutionary computation
July 2007
2313 pages
ISBN:9781595936974
DOI:10.1145/1276958
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 07 July 2007

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. camera calibration
  2. colorimetry
  3. constraints
  4. evolution strategies
  5. spectral sensitivity

Qualifiers

  • Article

Conference

GECCO07
Sponsor:

Acceptance Rates

GECCO '07 Paper Acceptance Rate 266 of 577 submissions, 46%;
Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)7
  • Downloads (Last 6 weeks)1
Reflects downloads up to 15 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Spectral Sensitivity Estimation Without a Camera2023 IEEE International Conference on Computational Photography (ICCP)10.1109/ICCP56744.2023.10233713(1-12)Online publication date: 28-Jul-2023
  • (2018)Estimation of the camera spectral sensitivity function using neural learning and architectureJournal of the Optical Society of America A10.1364/JOSAA.35.00085035:6(850)Online publication date: 2-May-2018
  • (2018)An investigation of the spectral and radiometric characteristics of low-cost digital cameras for use in UAV remote sensingInternational Journal of Remote Sensing10.1080/01431161.2018.148829739:15-16(4891-4909)Online publication date: 3-Jul-2018
  • (2013)Camera Spectral Sensitivity and White Balance Estimation from Sky ImagesInternational Journal of Computer Vision10.1007/s11263-013-0632-1105:3(187-204)Online publication date: 1-Dec-2013
  • (2013)On the von Kries Model: Estimation, Dependence on Light and Device, and ApplicationsAdvances in Low-Level Color Image Processing10.1007/978-94-007-7584-8_4(95-135)Online publication date: 17-Dec-2013
  • (2012)Camera spectral sensitivity estimation from a single image under unknown illumination by using fluorescence2012 IEEE Conference on Computer Vision and Pattern Recognition10.1109/CVPR.2012.6247752(805-812)Online publication date: Jun-2012
  • (2011)Practical spectral characterization of trichromatic camerasACM Transactions on Graphics10.1145/2070781.202420430:6(1-10)Online publication date: 12-Dec-2011
  • (2011)Practical spectral characterization of trichromatic camerasProceedings of the 2011 SIGGRAPH Asia Conference10.1145/2024156.2024204(1-10)Online publication date: 12-Dec-2011
  • (2010)Using digital cameras to investigate animal colouration: estimating sensor sensitivity functionsBehavioral Ecology and Sociobiology10.1007/s00265-010-1097-765:4(849-858)Online publication date: 10-Nov-2010
  • (2008)A genetic programming approach to deriving the spectral sensitivity of an optical systemProceedings of the 11th European conference on Genetic programming10.5555/1792694.1792701(61-72)Online publication date: 26-Mar-2008
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media