[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Tile-based QCA design using majority-like logic primitives

Published: 01 October 2005 Publication History

Abstract

The design of circuits and systems in Quantum-dot Cellular Automata (QCA) is still in infancy. The basic logic primitive in QCA is the majority voter (MV), that is not a universal function; so, inverters (INV) are also required. Blocks (referred to as tiles) are utilized in this article. A tile with a combined logic function of MV and INV (MV-like function) is proposed. It is shown that the MV-like tile can be effectively used in logic design as basic primitive. Tiles based on both the fully populated (FP) and non-fully populated (NFP) grids are investigated in detail. Various arrangements in inputs and outputs are also possible among the 4 sides of a grid, thus defining different tiles. Using a coherence vector simulation engine, it is shown that the 3 × 3 grid offers versatile logic operation. Different combinational functions such as majority-like and wire crossing are obtained using these tiles. Tile-based design of different circuits is compared to gate-based and SQUARES designs.

References

[1]
Amlani, I. Orlov, A. O., Toth, G., Lent, C. S., Bernstein, G. H., and Snider, G. L. 1999. Digital logic gate using quantum-dot cellular automata. Science 284, 5412, 289--291.
[2]
Antonelli, D. A., Chen, D. Z., Dysart, T. J., Hu, X. S., Kahng, A. B., Kogge, P. M., Murphy, R. C., and Niemier, M. T. 2004. Quantum-dot cellular automata (QCA) circuit partitioning: Problem modeling and solutions. In Proceedings of the Design Automation Conference, 363--368.
[3]
Bernstein, G. H., Hu, W., Hang, Q., Sarveswaran, K., and Lieberman, M. 2004. Electron beam lithography and liftoff of molecules and DNA rafts. In Proceedings of the IEEE Conference on Nanotechnology. IEEE Computer Society Press, Los Alamitos, CA, 201--203.
[4]
Berzon D. and Fountain, T. J. 1999. A memory design in QCAs using the SQUARES formalism. In Proceedings of the 9th Great Lakes Symposium on VLSI. 166--169.
[5]
Dimitrov, V. S., Jullien, G. A., and Walus, K. 2002. Quantum-dot cellular automata carry-look-ahead adder and barrel shifter. In Proceedings of the IEEE Emerging Telecommunications Technologies Conference. IEEE Computer Society Press, Los Alamitos, CA, pp. 2/1--2/4.
[6]
Frost, S. E., Rodrigues, A. F., Janiszewski, A. W., Rausch R. T., and Kogge, P. M. 2002. Memory in motion: A study of storage structures in QCA. In Proceedings of the 1st Workshop on Non-Silicon Computation.
[7]
Huang, J., Momenzadeh, M., Schiano, L., and Lombardi, F. 2005a. Simulation-based design of modular QCA circuits. In Proceedings of the IEEE Conference on Nanotechnology (Nagoya, Japan). IEEE Computer Society Press, Los Alamitos, CA (Paper WE-P7-1, IEEE CD-ROM 05TH8816C).
[8]
Huang, J., Momenzadeh, M., Schiano, L., Ottavi, M., and Lombardi, F. 2005b. A methodology for tile-based Design of QCA combinational circuits. Internal Report, ECE Department, Northeastern Univ., Boston, MA, available on request.
[9]
Jiao, J., Long, G. L., Grandjean, F., Beatty, A. M., and Fehiner, T. P. 2003. Building blocking for the molecular expression of QCA, isolation and characterization of a covalently bounded square array of two ferrocenium and two ferrocene complexes. J. Amer. Chem. Soc. 125, 25, 7522--7523.
[10]
Lent, C. S., Tougaw, P. D., and Porod, W. 1994. Quantum cellular automata: The physics of computing with arrays of quantum dot molecules. In PhysComp '94: Proceedings of the Workshop on Physics and Computing. IEEE Computer Society Press, Los Alamitos, CA, 5--13.
[11]
McCluskey, E. 1986. Logic Design Principles, Prentice-Hall, Englewood Cliffs, NJ.
[12]
Niemier, M. T. and Kogge, P. M. 1999. Logic-in-wire: Using quantum dots to implement a microprocessor. In Proceedings of the International Conference on Electronics, Circuits, and Systems (ICECS'99). 1211--1215.
[13]
Niemier, M. T. and Kogge, P. M. 2001. Problems in designing with QCAs: Layout=timing. Int. J. Circ. Theory Appl. 29, 1, 49--62.
[14]
Niemier, M. T., Rodrigues, A. F., and Kogge, P. M. 2002. A potentially implementable FPGA for quantum dot cellular automata. In Proceedings of the 1st Workshop on Non-Silicon Computation (NSC-1), (held in conjunction with 8th International Symposium on High Performance Computer Architecture (HPCA-8)).
[15]
Orlov, A. O., Amlani, I., Kummamuru, R., Rajagopal, R., Toth, G., Lent, C. S., Bernstein, G. H., and Snider, G. L. 2000. Experimental demonstration of clocked single-electron switching in quantum-dot cellular automata. Appl. Phys. Lett., 77, 2, 295--297.
[16]
QCADesigner Home Page: www.atips.ca/projects/qcadesigner/.
[17]
Qi, H., Sharma, S., Li, Z., Snider, G. L., Orlov, A. O., Lent, C. S., and Fehiner, T. P. 2003. Molecular quantum cellular automata cells: Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular QCA. J. Amer. Chem. Soc., 125, 49, 15250--15259.
[18]
Tahoori, M., Momenzadeh, M., Huang, J., and Lombardi, F. 2004. Defects and faults in quantum cellular automata at nano scale. In Proceedings of VLSI Test Symposium. 291--296.
[19]
Tougaw, P. D. and Lent, C. S. 1994. Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75, 3, 1818--1825.
[20]
Tougaw, P. D. and Lent, C. S. 1996. Dynamic behavior of quantum cellular automata. J. Appl. Phys., 80, 8, 4722--4736.
[21]
Walus, K., Budiman, R. A., and Jullien, G. A. 2002. Effects of morphological variations of self-assembled nanostructures on quantum-dot cellular automata (QCA) circuits. In Proceedings of Frontiers of Integration: An International Workshop on Integrating Nanotechnologies.
[22]
Walus, K., Vetteth, A., Jullien, G. A., and Dimitrov, V. S. 2003. RAM design using quantum-dot cellular automata. In Proceedings of the NanoTechnology Conference, Vol 2. pp. 160--163.
[23]
Wang, W., Walus, K., and Jullien, G. A. 2003. Quantum-dot cellular automata adders. In Proceedings of the IEEE Conference on Nanotechnology, IEEE Computer Society Press, Los Alamitos, CA, 461--464.

Cited By

View all
  • (2024)Design and simulation of a new QCA-based low-power universal gateFrontiers in Computer Science10.3389/fcomp.2024.13739066Online publication date: 5-Jun-2024
  • (2024)Towards Atomic Defect-Aware Physical Design of Silicon Dangling Bond Logic on the H -Si $(100)-2\times 1$ Surface2024 Design, Automation & Test in Europe Conference & Exhibition (DATE)10.23919/DATE58400.2024.10546683(1-2)Online publication date: 25-Mar-2024
  • (2024)Technology Mapping for Beyond-CMOS Circuitry with Unconventional Cost Functions2024 IEEE 24th International Conference on Nanotechnology (NANO)10.1109/NANO61778.2024.10628909(51-56)Online publication date: 8-Jul-2024
  • Show More Cited By

Index Terms

  1. Tile-based QCA design using majority-like logic primitives

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Journal on Emerging Technologies in Computing Systems
    ACM Journal on Emerging Technologies in Computing Systems  Volume 1, Issue 3
    October 2005
    61 pages
    ISSN:1550-4832
    EISSN:1550-4840
    DOI:10.1145/1116696
    Issue’s Table of Contents

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Journal Family

    Publication History

    Published: 01 October 2005
    Published in JETC Volume 1, Issue 3

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. QCA
    2. emerging technologies
    3. processing-by-wire

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)1
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 13 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Design and simulation of a new QCA-based low-power universal gateFrontiers in Computer Science10.3389/fcomp.2024.13739066Online publication date: 5-Jun-2024
    • (2024)Towards Atomic Defect-Aware Physical Design of Silicon Dangling Bond Logic on the H -Si $(100)-2\times 1$ Surface2024 Design, Automation & Test in Europe Conference & Exhibition (DATE)10.23919/DATE58400.2024.10546683(1-2)Online publication date: 25-Mar-2024
    • (2024)Technology Mapping for Beyond-CMOS Circuitry with Unconventional Cost Functions2024 IEEE 24th International Conference on Nanotechnology (NANO)10.1109/NANO61778.2024.10628909(51-56)Online publication date: 8-Jul-2024
    • (2024)Fault-tolerant quantum-dot cellular automata linear feedback shift register for nano communication applicationsResults in Optics10.1016/j.rio.2024.10070516(100705)Online publication date: Jul-2024
    • (2024)Design of ternary reversible Feynman and Toffoli gates in ternary quantum-dot cellular automataNano Communication Networks10.1016/j.nancom.2024.10054542(100545)Online publication date: Dec-2024
    • (2024)Toward implementing robust quantum logic circuits using effectual fault-tolerant majority voter gateMaterials Science and Engineering: B10.1016/j.mseb.2023.117161301(117161)Online publication date: Mar-2024
    • (2024)New tile-based circuits converting BCD code to gray, excess-3, and aiken codes in quantum-dot cellular automata (QCA) nanotechnologyHeliyon10.1016/j.heliyon.2024.e4044610:22(e40446)Online publication date: Nov-2024
    • (2024)Efficient Design of Ternary Reversible T Flip-Flop Using Quantum Dot Cellular AutomataArabian Journal for Science and Engineering10.1007/s13369-024-09631-0Online publication date: 14-Oct-2024
    • (2023)N譔 Clos Digital Cross-Connect Switch Using Quantum Dot Cellular Automata (QCA)Computer Systems Science and Engineering10.32604/csse.2023.03054845:3(2901-2917)Online publication date: 2023
    • (2023)Demystify the Fuzzing Methods: A Comprehensive SurveyACM Computing Surveys10.1145/362337556:3(1-38)Online publication date: 5-Oct-2023
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media