[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

FEMSTER: An object-oriented class library of high-order discrete differential forms

Published: 01 December 2005 Publication History

Abstract

FEMSTER is a modular finite element class library for solving three-dimensional problems arising in electromagnetism. The library was designed using a modern geometrical approach based on differential forms (or p-forms) and can be used for high-order spatial discretizations of well-known H(div)- and H(curl)-conforming finite element methods. The software consists of a set of abstract interfaces and concrete classes, providing a framework in which the user is able to add new schemes by reusing the existing classes or by incorporating new user-defined data types.

References

[1]
Abraham, R., Marsden, J. E., and Ratiu, T. 1996. Manifolds, Tensor Analysis, and Applications, 2nd ed. Springer series in Applied Mathematical Sciences. Springer Verlag, Berlin, Germany.
[2]
Ainsworth, M. 2004. Discrete dispersion relation for hp-version finite element approximation at high wave number. SIAM J. Num. Anal. 42, 2, 553--575.
[3]
Ainsworth, M. and Coyle, J. 2001a. Conditioning of hierarchic p-version Nédélec elements on meshes of curvilinear quadrilaterals and hexahedra. Tech. rep., Department of Mathematics, University of Strathclyde, Glasgow, U.K.
[4]
Ainsworth, M. and Coyle, J. 2001b. Hierarchic hp-edge element families for Maxwell's equations on hybrid quadrilateral/triangular meshes. Comput. Methods Appl. Mech. Eng. 190, 6709--6733.
[5]
Ainsworth, M. and Coyle, J. 2002. Hierarchic finite element bases on unstructured tetrahedral meshes. Tech. rep., Department of Mathematics, University of Strathclyde, Glasgow, U.K.
[6]
Ainsworth, M. and Coyle, J. 2003. Computation of Maxwell eingenvalues on curvilinear domains using hp-version of Nédélec elements. Tech. rep., Department of Mathematics, University of Strathclyde, Glasgow, U.K.
[7]
Babuska, I., Ihlenburg, F., Strouboulis, T., and Gangaraj, S. K. 1997. A posteriori error estimation for finite element solution of Helmholtz. Internat. J. Numer. Methods Eng. 40, 21, 3883--3900.
[8]
Babuska, I., Strouboulis, T., Upadhyay, C., and Gangaraj, S. K. 1995. A posteriori estimation and adaptive control of the pollution error in the h-version of the finite element method for finite element solution of Helmholtz. Internat. J. Numer. Methods Eng. 38, 24, 4207--4235.
[9]
Baldomir, D. 1986. Differential forms and electromagnetism in 3-dimensional Euclidean space R3. IEEE Proc. 133, 3, 139--143.
[10]
Bossavit, A. 1998. Computational Electromagnetism: Variational Formulation, Complementarity, Edge Elements. Academic Press (currently part of Elsevier, Burlington, MA).
[11]
Brezzi, F. and Fortin, M. 1991. Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics. Springer Verlag, Berlin, Germany.
[12]
Burke, W. 1985. Applied Differential Geometry: Variational Formulation. Cambridge University Press, Cambridge, U.K.
[13]
Ciarlet, P. G. 1978. The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, The Netherlands.
[14]
Clemens, M. and Weiland, T. 2001. Discrete electromagnetism with the finite integration technique. In Geometric Methods for Computational Electromagnetics, F. Texeira, ed. Vol. 32 of PIER. EMW Publishing, Cambridge, MA, 189--206.
[15]
Deschamps, G. 1981. Electromagnetics and differential forms. IEEE Proc. 69, 6, 676--687.
[16]
Graglia, R., Wilton, P., and Peterson, A. 1997. Higher order interpolatory vector bases for computational electromagnetics. IEEE Trans. Ant. Prop. 45, 3, 329--342.
[17]
Graglia, R., Wilton, P., Peterson, A., and Gheorma, I.-L. 1998. Higher order interpolatory vector bases on prism elements. IEEE Trans. Ant. Prop. 46, 3, 442--450.
[18]
Hiptmair, R. 1999. Canonical construction of finite elements. Math. Comp. 68, 228, 1325--1346.
[19]
Hiptmair, R. 2001. Discrete Hodge operators: An algebraic perspective. J. Electromag. Waves Appl. 15, 3, 343--344.
[20]
Hiptmair, R. 2002. Finite elements in computational electromagnetism. Acta Numerica, 11, Jan., 237--339.
[21]
Hyman, J. and Shashkov, M. 1999. Mimetic discretization for Maxwell's equations. J. Comput. Phys. 151, 2, 881--909.
[22]
Nédélec, J. C. 1980. mixed finite elements in r3. Numer. Math. 35, 315--341.
[23]
Nédélec, J. C. 1986. A new family of mixed finite elements in r3. Numer. Math. 50, 57--81.
[24]
Raviart, P. and Thomas, J. 1977. A mixed finite element method for 2nd order elliptic problems. In Mathematical Aspects of the Finite Element Method, I. Galligani and E. Mayera, eds. Lecture Notes. in Mathematics, vol. 606. Springer Verlag, Berlin, Germany, 293--315.
[25]
Rieben, R., Rodrigue, G., and White, D. 2005. A high order mixed finite element method for solving the time dependent Maxwell equations on unstructured grids. J. Computat. Phys. 204, 4, 490--579.
[26]
Rodrigue, G. and White, D. 2001. A vector finite element time-domain method for solving Maxwell's equations on unstructured hexahedral grids. SIAM J. Sci. Comp. 23, 3, 683--706.
[27]
Stroustrup, B. 1991. C++ Programming Language. Addison-Wesley, Reading, MA.
[28]
Tarhasaari, T. and Kettunen, L. 2001. Topological approach to computational electromagnetism. In Geometric Methods for Computational Electromagnetics, F. Texeira, ed. Vol. 32 of PIER. EMW Publishing, Cambridge, MA, 189--206.
[29]
Teixeira, F. L. 2001. Geometric Methods in Computational Electromagnetics. Vol. 32 of PIER. EMW Publishing, Cambridge, MA.
[30]
Tonti, E. 2001. A direct formulation of field laws: The cell method. Comput. Mod. Eng. Sci. 2, 2, 237--258.
[31]
Warren, S. and Scott, W. 1994. An investigation of numerical dispersion in the vector finite element method using quadrilateral elements. IEEE Trans. Ant. Prop. 42, 11, 1502--1508.
[32]
Warren, S. and Scott, W. 1995. Numerical dispersion in the finite element method using triangular edge elements. Opt. Tech. Lett. 9, 6, 315--319.
[33]
Weiland, T. 1996. Time domain electromagnetic field computation with finite difference methods. Int. J. Numer. Modelling 9, 295--319.
[34]
White, D. 2000. Numerical dispersion of a vector finite element method on skewed hexahedral grids. Commun. Numer. Meth. Eng. 16, 47--55.
[35]
Whitney, H. 1957. Geometric Integration Theory. Princeton University Press, Princeton, NJ.
[36]
Yee, K. S. 1966. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Ant. Prop. 14, 3, 302--307.

Cited By

View all
  • (2023)Electromagnetic Modeling Using Adaptive Grids – Error Estimation and Geometry RepresentationSurveys in Geophysics10.1007/s10712-023-09794-945:1(277-314)Online publication date: 22-Jun-2023
  • (2020)Subdivision‐Specialized Linear Algebra Kernels for Static and Dynamic Mesh Connectivity on the GPUComputer Graphics Forum10.1111/cgf.1393439:2(335-349)Online publication date: 13-Jul-2020
  • (2018)Anisotropic three-dimensional inversion of CSEM data using finite-element techniques on unstructured gridsGeophysical Journal International10.1093/gji/ggy029213:2(1056-1072)Online publication date: 29-Jan-2018
  • Show More Cited By

Index Terms

  1. FEMSTER: An object-oriented class library of high-order discrete differential forms

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Mathematical Software
      ACM Transactions on Mathematical Software  Volume 31, Issue 4
      December 2005
      167 pages
      ISSN:0098-3500
      EISSN:1557-7295
      DOI:10.1145/1114268
      Issue’s Table of Contents

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 01 December 2005
      Published in TOMS Volume 31, Issue 4

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. H(div)- and H(curl)-conforming finite element methods
      2. computational electromagnetism
      3. high-order finite element
      4. object-oriented programming

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)8
      • Downloads (Last 6 weeks)3
      Reflects downloads up to 01 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2023)Electromagnetic Modeling Using Adaptive Grids – Error Estimation and Geometry RepresentationSurveys in Geophysics10.1007/s10712-023-09794-945:1(277-314)Online publication date: 22-Jun-2023
      • (2020)Subdivision‐Specialized Linear Algebra Kernels for Static and Dynamic Mesh Connectivity on the GPUComputer Graphics Forum10.1111/cgf.1393439:2(335-349)Online publication date: 13-Jul-2020
      • (2018)Anisotropic three-dimensional inversion of CSEM data using finite-element techniques on unstructured gridsGeophysical Journal International10.1093/gji/ggy029213:2(1056-1072)Online publication date: 29-Jan-2018
      • (2018)Adaptive finite element modelling of three-dimensional magnetotelluric fields in general anisotropic mediaJournal of Applied Geophysics10.1016/j.jappgeo.2018.01.012151(113-124)Online publication date: Apr-2018
      • (2017)A GPU-Adapted Structure for Unstructured GridsComputer Graphics Forum10.1111/cgf.1314436:2(495-507)Online publication date: 1-May-2017
      • (2017)Axisymmetric charge-conservative electromagnetic particle simulation algorithm on unstructured grids: Application to microwave vacuum electronic devicesJournal of Computational Physics10.1016/j.jcp.2017.06.016346(295-317)Online publication date: Oct-2017
      • (2016)General Template Units for the Finite Volume Method in Box-Shaped DomainsACM Transactions on Mathematical Software10.1145/283517543:1(1-32)Online publication date: 13-Aug-2016
      • (2015)High-Order Low Dissipation Conforming Finite-Element Discretization of the Maxwell EquationsCommunications in Computational Physics10.4208/cicp.100310.230511a11:3(863-892)Online publication date: 20-Aug-2015
      • (2014)Meshfree magnetotelluric modellingGeophysical Journal International10.1093/gji/ggu207198:2(1255-1268)Online publication date: 27-Jun-2014
      • (2014)The Mimetic Methods Toolkit: An object-oriented API for Mimetic Finite DifferencesJournal of Computational and Applied Mathematics10.1016/j.cam.2013.12.046270(308-322)Online publication date: Nov-2014
      • Show More Cited By

      View Options

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media