[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/1102351.1102449acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmlConference Proceedingsconference-collections
Article

Object correspondence as a machine learning problem

Published: 07 August 2005 Publication History

Abstract

We propose machine learning methods for the estimation of deformation fields that transform two given objects into each other, thereby establishing a dense point to point correspondence. The fields are computed using a modified support vector machine containing a penalty enforcing that points of one object will be mapped to "similar" points on the other one. Our system, which contains little engineering or domain knowledge, delivers state of the art performance. We present application results including close to photorealistic morphs of 3D head models.

References

[1]
Allen, B., Curless, B., & Popovic, Z. (2003). The space of human body shapes: reconstruction and parameterization from range scans. SIGGRAPH'03.
[2]
Audette, M. A., Ferrie, F. P., & Peters, T. M. (2000). An algorithmic overview of surface registration techniques for medical imaging. Medical Image Analysis, 4, 201--217.
[3]
Bakir, G. H., Gretton, A., Franz, M., & Schöölkopf, B. (2004). Sequential multivariate regression via stiefel manifold constraints. Proc. DAGM.
[4]
Bartlett, P., & Schöölkopf, B. (2001). Some kernels for structured data (Technical Report). Biowulf Technologies.
[5]
Besl, P. J., & McKay, N. D. (1992). A method for registration of 3-D shapes. IEEE Trans. PAMI, 14, 239--256.
[6]
Beymer, D., & Poggio, T. (1994). Learning and networks: Applications to graphics and very-low bandwidth video-conferencing. GOMAC. California.
[7]
Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of 3D faces. SIGGRAPH'99.
[8]
Bregler, C., & Omohundro, S. M. (1995). Nonlinear image interpolation using manifold learning. Advances in Neural Information Processing Systems 7.
[9]
Carr, J., Beatson, R., Cherrie, J., Mitchell, T., Fright, W., McCallum, B., & Evans, T. (2001). Reconstruction and representation of 3D objects with radial basis functions. SIGGRAPH'01 (pp. 67--76).
[10]
Cohen-Or, D., Solomovic, A., & Levin, D. (1998). Three-dimensional distance field metamorphosis. ACM Trans. Graph., 17, 116--141.
[11]
Cootes, T. F., Edwards, G. J., & Taylor, C. J. (1998). Active appearance models. ECCV '98: Proceedings of the 5th European Conference on Computer Vision-Volume II (pp. 484--498). Springer-Verlag.
[12]
Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines. Cambridge, UK: Cambridge University Press.
[13]
Freeman, W. T., Jones, T. R., & Pasztor, E. C. (2002). Example-based super-resolution. IEEE Computer Graphics and Applications.
[14]
Grochow, K., Martin, S. L., Hertzmann, A., & Popovic, Z. (2004). Style-based inverse kinematics. SIGGRAPH'04. ACM Press.
[15]
Haralick, R., & Shapiro, L. (1992). Computer and robot vision, vol. 2. Reading, MA: Addison-Wesley.
[16]
Micchelli, C., & Pontil, M. (2005). On learning vector-valued functions. Neural Computation, 17, 177--204.
[17]
Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., & Alexa, M. (2004). Point based animation of elastic, plastic and melting objects. SIGGRAPH/EUROGRAPHICS Symposium on Computer Animation.
[18]
Rueckert, D., & Frangi, A. F. (2003). Automatic construction of 3-d statistical deformation models of the brain using nonrigid registration. IEEE Trans. on Medical Imaging, 22, 1014--1025.
[19]
Rusinkiewicz, S., & Levoy, M. (2001). Efficient variants of the ICP algorithm. Proc. Conf. on 3D Digital Imaging and Modeling (pp. 145--152).
[20]
Saul, L., & Jordan, M. (1997). A variational principle for model-based morphing. Advances in Neural Information Processing Systems 9.
[21]
Schaback, R. (1995). Creating surfaces from scattered data using radial basis functions. In at M. D. al. (Ed.), Mathematical methods for curves and surfaces. Nashville: Vanderbilt University Press.
[22]
Schölkopf, B., Giesen, J., & Spalinger, S. (2005). Kernel methods for implicit surface modeling. Advances in Neural Information Processing Systems 17. Cambridge, MA: MIT Press.
[23]
Schölkopf, B., & Smola, A. J. (2002). Learning with kernels. Cambridge, MA: MIT Press.
[24]
Shelton, C. (2000). Morphable surface models. Int. J. of Computer Vision, 38, 75--91.
[25]
Steinke, F., Schölkopf, B., & Blanz, V. (2005). Support vector machines for 3D shape processing. Computer Graphics Forum (Proc. EUROGRAPHICS), 24.
[26]
Vapnik, V. N. (1998). Statistical learning theory. New York: Wiley.
[27]
Vetter, T., & Poggio, T. (1997). Linear object classes and image synthesis from a single example image. IEEE Trans. PAMI, 19, 733--742.
[28]
Wahba, G. (1990). Spline models for observational data, vol. 59 of CBMS-NSF Regional Conference Series in Applied Mathematics. Philadelphia, Pennsylvania: Society for Industrial and Applied Mathematics.
[29]
Walder, C. J., & Lovell, B. C. (2003). Kernel based algebraic curve fitting. Proc. ICAPR'2003.
[30]
Weston, J., Chapelle, O., Elisseeff, A., Schölkopf, B., & Vapnik, V. (2003). Kernel dependency estimation. Advances in Neural Information Processing Systems 15.
[31]
Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lengauer, T., & Müüller, K.-R. (2000). Engineering SVM kernels that recognize translation initiation sites. Bioinformatics, 16, 799--807.

Cited By

View all
  • (2021)Uncertainty-Aware Annotation Protocol to Evaluate Deformable Registration AlgorithmsIEEE Transactions on Medical Imaging10.1109/TMI.2021.307084240:8(2053-2065)Online publication date: Aug-2021
  • (2018)Gaussian Process Morphable ModelsIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2017.273974340:8(1860-1873)Online publication date: 1-Aug-2018
  • (2016)Sparse Kernel Machines for Discontinuous Registration and Nonstationary Regularization2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)10.1109/CVPRW.2016.63(449-456)Online publication date: Jun-2016
  • Show More Cited By
  1. Object correspondence as a machine learning problem

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ICML '05: Proceedings of the 22nd international conference on Machine learning
    August 2005
    1113 pages
    ISBN:1595931805
    DOI:10.1145/1102351
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 07 August 2005

    Permissions

    Request permissions for this article.

    Check for updates

    Qualifiers

    • Article

    Acceptance Rates

    Overall Acceptance Rate 140 of 548 submissions, 26%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)5
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 14 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2021)Uncertainty-Aware Annotation Protocol to Evaluate Deformable Registration AlgorithmsIEEE Transactions on Medical Imaging10.1109/TMI.2021.307084240:8(2053-2065)Online publication date: Aug-2021
    • (2018)Gaussian Process Morphable ModelsIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2017.273974340:8(1860-1873)Online publication date: 1-Aug-2018
    • (2016)Sparse Kernel Machines for Discontinuous Registration and Nonstationary Regularization2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)10.1109/CVPRW.2016.63(449-456)Online publication date: Jun-2016
    • (2016)Applying Random Forests to the Problem of Dense Non-rigid Shape CorrespondencePerspectives in Shape Analysis10.1007/978-3-319-24726-7_11(231-248)Online publication date: 1-Oct-2016
    • (2015)Servoing across object instances: Visual servoing for object category2015 IEEE International Conference on Robotics and Automation (ICRA)10.1109/ICRA.2015.7140042(6011-6018)Online publication date: May-2015
    • (2014)Variational Image Registration Using Inhomogeneous RegularizationJournal of Mathematical Imaging and Vision10.1007/s10851-014-0497-050:3(246-260)Online publication date: 1-Nov-2014
    • (2013)Multi-resolutive sparse approximations of d-dimensional dataComputer Vision and Image Understanding10.1016/j.cviu.2012.10.012117:4(418-428)Online publication date: 1-Apr-2013
    • (2013)A Unified Approach to Shape Model Fitting and Non-rigid RegistrationProceedings of the 4th International Workshop on Machine Learning in Medical Imaging - Volume 818410.1007/978-3-319-02267-3_9(66-73)Online publication date: 22-Sep-2013
    • (2012)Learning the dynamics of objects by optimal functional interpolationNeural Computation10.1162/NECO_a_0032524:9(2457-2472)Online publication date: 1-Sep-2012
    • (2011)Using landmarks as a deformation prior for hybrid image registrationProceedings of the 33rd international conference on Pattern recognition10.5555/2039976.2039999(196-205)Online publication date: 31-Aug-2011
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media