[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/1102351.1102410acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmlConference Proceedingsconference-collections
Article

A brain computer interface with online feedback based on magnetoencephalography

Published: 07 August 2005 Publication History

Abstract

The aim of this paper is to show that machine learning techniques can be used to derive a classifying function for human brain signal data measured by magnetoencephalography (MEG), for the use in a brain computer interface (BCI). This is especially helpful for evaluating quickly whether a BCI approach based on electroencephalography, on which training may be slower due to lower signal-to-noise ratio, is likely to succeed. We apply RCE and regularized SVMs to the experimental data of ten healthy subjects performing a motor imagery task. Four subjects were able to use a trained classifier to write a short name. Further analysis gives evidence that the proposed imagination task is suboptimal for the possible extension to a multiclass interface. To the best of our knowledge this paper is the first working online MEG-based BCI and is therefore a "proof of concept".

References

[1]
Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler, A., Perelmouter, J., Taub, E., & Flor, H. (1999). A spelling device for the paralysed. Nature, 398, 297--298.
[2]
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273--297.
[3]
Georgopoulos, A. P., Leuthold, A. C., & Langheim, F. J. P. (2004). Motor trajectory from magnetoen-cephalographic (MEG) data. abstract, Society for Neruoscience, 884.1.
[4]
Graimann, B., Huggins, J. E., Levine, S. P., & Pfurtscheller, G. (2004). Towards a direct brain interface based on human subdural recordings and wavelet packet analysis. IEEE Transactions on Biomedical Engineering, 51, 954--962.
[5]
Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2003). Gene selection for cancer classification using support vector machines. Journal of Machine Learning Research, 3, 1439--1461.
[6]
Haykin, S. (1996). Adaptive filter theory. Upper Saddle River, NJ, USA: Prentice-Hall International, Inc.
[7]
Kauhanen, L., Rantanen, P., Lehtonen, J. A., Tarnanen, I., Alaranta, H., & Sams, M. (2004). Sensorimotor cortical activity of tetraplegics during attempted finger movements. Biomedizinische Technik, 49 Supp 1, 59--60.
[8]
Lal, T. N., Hinterberger, T., Widman, G., Schröder, M., Hill, N. J., Rosenstiel, W., Elger, C. E., Schölkopf, B., & Birbaumer, N. (2005). Methods towards invasive human brain computer interfaces.
[9]
In L. K. Saul, Y. Weiss and L. Bottou (Eds.), Advances in neural information processing systems 17. Cambridge, MA: MIT Press.
[10]
Lal, T., Schröder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer, N., & Schöölkopf, B. (2004). Support Vector Channel Selection in BCI. IEEE Transactions on Biomedical Engineering. Special Issue on Brain-Computer Interfaces, 51, 1003--1010.
[11]
Leuthardt, E., Schalk, G., Wolpaw, J., Ojemann, J., & Moran, D. (2004). A brain computer interface using electrocorticographic signals in humans. Journal of Neural Engineering, 1, 63--71.
[12]
Mitchell, T., Hutchinson, R., Just, M., Niculescu, R., Pereira, F., & Wang, X. (2003). Classifying instantaneous cognitive states from fMRI data. Proceedings of the American Medical Informatics Association Annual Symposium (pp. 465--469).
[13]
Pfurtscheller., G., Neuper, C., Schlögl, A., & Lugger, K. (1998). Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters. IEEE Transactions on Rehabilitation Engineering, 6, 316--325.
[14]
Ramoser, H., Müller-Gerking, J., & Pfurtscheller, G. (2000). Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Transactions on Rehabilitation Engineering, 8, 441--446.
[15]
Salmelin, R., & Hari, R. (1994). Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement. Neuroscience, 60, 537--550.
[16]
Schröder, M., Lal, T. N., Hinterberger, T., Bogdan, M., Hill, N. J., Birbaumer, N., Rosenstiel, W., & Schöölkopf, B. (2005). Robust EEG channel selection across subjects for brain computer interfaces. EURASIP Journal on Applied Signal Processing. in press.
[17]
Tiihoonen, J., Kajola, M., & Hari, R. (1989). Magnetic mu rhythm in man. Neuroscience, 32, 793--800.
[18]
Weiskopf, N., Mathiak, K., Bock, S. W., Scharnowski, F., Veit, R., Grodd, W., Goebel, R., & Birbaumer, N. (2004). Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). IEEE Transactions On Biomedical Engineering, 51.
[19]
Wolpaw, R., & McFarland, D. (1994). Multichannel EEG-based brain-computer communication. Electroencephalography and Clinical Neurophysiology, 90, 444--449.

Cited By

View all
  • (2024)Spatio-Temporal EEG Representation Learning on Riemannian Manifold and Euclidean SpaceIEEE Transactions on Emerging Topics in Computational Intelligence10.1109/TETCI.2023.33325498:2(1469-1483)Online publication date: Apr-2024
  • (2024)A learnable continuous wavelet-based multi-branch attentive convolutional neural network for spatio-spectral-temporal EEG signal decodingExpert Systems with Applications10.1016/j.eswa.2024.123975(123975)Online publication date: Apr-2024
  • (2022)Role of 5G Communication Along With Blockchain Security in Brain-Computer InterfacingFuturistic Design and Intelligent Computational Techniques in Neuroscience and Neuroengineering10.4018/978-1-7998-7433-1.ch004(65-85)Online publication date: 2022
  • Show More Cited By
  1. A brain computer interface with online feedback based on magnetoencephalography

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ICML '05: Proceedings of the 22nd international conference on Machine learning
    August 2005
    1113 pages
    ISBN:1595931805
    DOI:10.1145/1102351
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 07 August 2005

    Permissions

    Request permissions for this article.

    Check for updates

    Qualifiers

    • Article

    Acceptance Rates

    Overall Acceptance Rate 140 of 548 submissions, 26%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)19
    • Downloads (Last 6 weeks)6
    Reflects downloads up to 11 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Spatio-Temporal EEG Representation Learning on Riemannian Manifold and Euclidean SpaceIEEE Transactions on Emerging Topics in Computational Intelligence10.1109/TETCI.2023.33325498:2(1469-1483)Online publication date: Apr-2024
    • (2024)A learnable continuous wavelet-based multi-branch attentive convolutional neural network for spatio-spectral-temporal EEG signal decodingExpert Systems with Applications10.1016/j.eswa.2024.123975(123975)Online publication date: Apr-2024
    • (2022)Role of 5G Communication Along With Blockchain Security in Brain-Computer InterfacingFuturistic Design and Intelligent Computational Techniques in Neuroscience and Neuroengineering10.4018/978-1-7998-7433-1.ch004(65-85)Online publication date: 2022
    • (2021)Decoding Covert Speech From EEG-A Comprehensive ReviewFrontiers in Neuroscience10.3389/fnins.2021.64225115Online publication date: 29-Apr-2021
    • (2021)Practical real-time MEG-based neural interfacing with optically pumped magnetometersBMC Biology10.1186/s12915-021-01073-619:1Online publication date: 10-Aug-2021
    • (2021)Extended Signal-Space Separation Method for Improved Interference Suppression in MEGIEEE Transactions on Biomedical Engineering10.1109/TBME.2020.304037368:7(2211-2221)Online publication date: Jul-2021
    • (2021)Optically Pumped Magnetometers for Practical MEG-Based Brain-Computer InterfacingBrain-Computer Interface Research10.1007/978-3-030-79287-9_4(35-46)Online publication date: 29-Aug-2021
    • (2019)Near-Infrared Optical Technologies in Brain-Computer Interface SystemsNew Frontiers in Brain-Computer Interfaces [Working Title]10.5772/intechopen.83345Online publication date: 9-Jan-2019
    • (2019)Filtering techniques for channel selection in motor imagery EEG applications: a surveyArtificial Intelligence Review10.1007/s10462-019-09694-8Online publication date: 28-Feb-2019
    • (2018)A Magnetoencephalographic/Encephalographic (MEG/EEG) Brain-Computer Interface Driver for Interactive iOS Mobile Videogame Applications Utilizing the Hadoop Ecosystem, MongoDB, and Cassandra NoSQL DatabasesDiseases10.3390/diseases60400896:4(89)Online publication date: 28-Sep-2018
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media