[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/1186562.1015804acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
Article

A stereo display prototype with multiple focal distances

Published: 01 August 2004 Publication History

Abstract

Typical stereo displays provide incorrect focus cues because the light comes from a single surface. We describe a prototype stereo display comprising two independent fixed-viewpoint volumetric displays. Like autostereoscopic volumetric displays, fixed-viewpoint volumetric displays generate near-correct focus cues without tracking eye position, because light comes from sources at the correct focal distances. (In our prototype, from three image planes at different physical distances.) Unlike autostereoscopic volumetric displays, however, fixed-viewpoint volumetric displays retain the qualities of modern projective graphics: view-dependent lighting effects such as occlusion, specularity, and reflection are correctly depicted; modern graphics processor and 2-D display technology can be utilized; and realistic fields of view and depths of field can be implemented. While not a practical solution for general-purpose viewing, our prototype display is a proof of concept and a platform for ongoing vision research. The design, implementation, and verification of this stereo display are described, including a novel technique of filtering along visual lines using 1-D texture mapping.

Supplementary Material

MOV File (pps072.mov)

References

[1]
AKELEY, K. 2004. Achieving near-correct focus cues using multiple image planes. PhD thesis, Stanford University.
[2]
BLACKWELL, H. 1946. Contrast thresholds of the human eye. Journal of the Optical Society of America 36, 624--643.
[3]
BOEDER, P. 1961. Co-operation of the extraocular muscles. American Journal of Ophthalmology 51, 397--403.
[4]
BROOKS, F., 2002. VR presentation at Hewlett Packard, Palo Alto, Jan.
[5]
DOWNING, E., HESSELINK, L., RALSTON, J., AND MACFARLANE, R. 1996. A three-color, solid-state, three-dimensional display. Science 273, 1185--1189.
[6]
FAVALORA, G. E., NAPOLI, J., HALL, D. M., DORVAL, R. K., GIOVINCO, M. G. RICHMOND, M. J., AND CHUN, W. S. 2002. 100 million-voxel volumetric display. Proceedings of the SPIE 4712, 300--312.
[7]
HOWARD, I. P., AND ROGERS, B. J. 1995. Binocular Vision and Stereopsis. Oxford University Press.
[8]
KILGARD. M. J. 1996. OpenGL Programming for the X Window System. Addison-Wesley Publishing Company.
[9]
KOOI, F. L., AND TOET, A. 2003. Additive and subtractive transparent depth displays. The International Society for Optical Engineering.
[10]
LEVICK, W. R. 1972. Receptive fields of retinal ganglion cells. In Handbook of Sensory Physiology, vol. VII/2. Springer Verlag: Berlin, 538--539.
[11]
LEVITT, H. 1971. Transformed up-down methods in psychoacoustics. Journal of the Acoustical Society of America 49, 467--477.
[12]
LIGHTSPACE TECHNOLOGIES. 2003. DepthCube technology white paper. Available at www.lightspacetech.com/.
[13]
LUCENTE, M., AND GALYEAN, T. A. 1995. Rendering interactive holographic images. In Proceedings of ACM SIGGRAPH 95, ACM Press / ACM SIGGRAPH, New York, R. Cook, Ed., Computer Graphics proceedings, Annual Conference Series, ACM, 387--394.
[14]
LUCENTE, M. 1997. Interactive three-dimensional holographic displays: seeing the future in depth. Computer Graphics (May).
[15]
MATHER, G., AND SMITH, D. R. R. 2000. Depth cue integration: stereopsis and image blur. Vision Research 40, 3501--3506.
[16]
MCDOWALL, I., AND BOLAS, M. 1994. Fakespace labs accommodation display research. Unpublished report.
[17]
MCQUAIDE, S. C., SEIBEL, E. J., B., R., AND III, T. A. F. 2002. Three-dimensional virtual retinal display system using a deformable membrane mirror. 2002 SID International Symposium Digest of Technical Papers 33, 1324--1327.
[18]
MON-WILLIAMS, M., WANN, J. P., AND RUSHTON, S. 1993. Binocular vision in a virtual world: visual deficits following the wearing of a head-mounted display. Ophthalmic & Physiological Optics 13 (Oct.), 387--391.
[19]
NORTH, W. J., AND WOODLING, C. H. 1970. Apollo crew procedures, simulation, and flight planning. In Astronautics & Aeronautics, vol. March. Available at http://history.nasa.gov/SP-287/sp287.htm.
[20]
NVIDIA CORPORATION. 2002. NVIDIA Quadro4 XGL The Standard for Workstation Graphics. Available at www.nvidia.com/object/LO_20020215_7302.html.
[21]
NWODOH, T. A., AND BENTON, S. A. 2000. Chidi holographic video system. In SPIE Proceedings on Practical Holography, vol. 3956.
[22]
OMURA, K., SHIWA, S., AND KISHINO, F., 1996. 3-D display with accommodative compensation (3DDAC) employing real-time gaze detection. SID 96 Digest, 889--892.
[23]
PERLIN, K., PAXIA, S., AND KOLLIN, J. S. 2000. An autostereoscopic display. In Proceedings of ACM SIGGRAPH 2000, ACM Press / ACM SIGGRAPH, New York, K. Akeley, Ed., Computer Graphics Proceedings, Annual Conference Series, ACM, 319--326.
[24]
ROLLAND, J. P., KRUEGER, M. W., AND GOON, A. A. 1999. Dynamic focusing in head-mounted displays. In SPIE Volume 3639, 463--470.
[25]
SAMPSELL, J. B. 2004. An overview of the performance envelope of digital micromirror device (dmd) based projection display systems. Tech. rep., Texas Instruments. Available at http://www.dlp.com/dlp_technology/.
[26]
SEGAL, M., AND AKELEY, K. 2002. The OpenGL Graphics System: A Specification (Version 1.4). OpenGL Architecture Review Board. Editor: Jon Leech.
[27]
SILVERMAN, N. L., SCHOWENGERDT, B. T., KELLY, J. P., AND SEIBEL, E. J. 2003. 58.51: Late-news paper: Engineering a retinal scanning laser display with integrated accommodative depth cues. SID 03 Digest, 1538--1541.
[28]
SIMON, A., SMITH, R. C., AND PAWLICKI, R. R. 2004. OmniStereo for panoramic virtual environment display systems. In Proceedings of VR 2004, IEEE, 67--73.
[29]
SUYAMA, S., TAKADA, H., UEHIRA, K., AND SAKAI, S. 2000. A novel direct-vision 3-D display using luminance-modulated two 2-D images displayed at different depths. SID 00 Digest 54.1, 1208--1211.
[30]
SUYAMA, S., DATE, M., AND TAKADA, H. 2000. Three-dimensional display system with dual-frequency liquid-crystal varifocal lens. Japanese Journal of Applied Physics 39 (Feb.), 480--484.
[31]
SUYAMA, S., TAKADA, H., UEHIRA, K., AND SAKAI, S. 2001. A new method for protruding apparent 3-D images in the DFD (depth-fused 3-D) display. 2001 International Symposium Digest of Technical Papers 32, 1300--1303.
[32]
TAN, D. S., CZERWINSKI, M., AND ROBERTSON, G. 2003. Women go with the (optical) flow. In CHI 2003.
[33]
WANDELL, B. A. 1995. Foundations of Vision. Sinauer Associates, Inc.
[34]
WANN, J. P., RUSHTON, S., AND MON-WILLIAMS, M. 1995. Natural problems for stereoscopic depth perception in virtual environments. Vision Research 35, 2731--2736.
[35]
WATT, S. J., AKELEY, K., AND BANKS, M. S. 2003. Focus cues to display distance affect perceived depth from disparity. Journal of Vision 3(9), 66a.
[36]
WÖPKING, M. 1995. Viewing comfort with stereoscopic pictures: An experimental study on the subjective effects of disparity magnitude and depth of focus. Journal of the SID 3(3), 101--103.
[37]
WRIGHT, S. L. 2002. IBM 9.2-megapixel flat-panel display: Technology and infrastructure. SPIE Proceedings 4712 (Apr.), 24--34.

Cited By

View all
  • (2022)The Effect of the Vergence-Accommodation Conflict on Virtual Hand Pointing in Immersive DisplaysProceedings of the 2022 CHI Conference on Human Factors in Computing Systems10.1145/3491102.3502067(1-15)Online publication date: 29-Apr-2022
  • (2021)Reproducing reality with a high-dynamic-range multi-focal stereo displayACM Transactions on Graphics10.1145/3478513.348051340:6(1-14)Online publication date: 10-Dec-2021
  • (2019)Integrated head-mounted display system based on a multi-planar architectureAdvances in Display Technologies IX10.1117/12.2509954(7)Online publication date: 1-Mar-2019
  • Show More Cited By

Index Terms

  1. A stereo display prototype with multiple focal distances

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SIGGRAPH '04: ACM SIGGRAPH 2004 Papers
    August 2004
    684 pages
    ISBN:9781450378239
    DOI:10.1145/1186562
    • Editor:
    • Joe Marks
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 01 August 2004

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. graphics hardware
    2. hardware systems
    3. optics
    4. user-interface hardware
    5. virtual reality

    Qualifiers

    • Article

    Conference

    SIGGRAPH04
    Sponsor:

    Acceptance Rates

    SIGGRAPH '04 Paper Acceptance Rate 83 of 478 submissions, 17%;
    Overall Acceptance Rate 1,822 of 8,601 submissions, 21%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)5
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 21 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2022)The Effect of the Vergence-Accommodation Conflict on Virtual Hand Pointing in Immersive DisplaysProceedings of the 2022 CHI Conference on Human Factors in Computing Systems10.1145/3491102.3502067(1-15)Online publication date: 29-Apr-2022
    • (2021)Reproducing reality with a high-dynamic-range multi-focal stereo displayACM Transactions on Graphics10.1145/3478513.348051340:6(1-14)Online publication date: 10-Dec-2021
    • (2019)Integrated head-mounted display system based on a multi-planar architectureAdvances in Display Technologies IX10.1117/12.2509954(7)Online publication date: 1-Mar-2019
    • (2019)Manufacturing Application-Driven Foveated Near-Eye DisplaysIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2019.289878125:5(1928-1939)Online publication date: May-2019
    • (2019)45‐2: Limits of Pancharatnam Phase lens for 3D/VR/AR ApplicationsSID Symposium Digest of Technical Papers10.1002/sdtp.1299650:1(616-619)Online publication date: 29-May-2019
    • (2018)LC lens systems to solve accommodation/convergence conflict in three-dimensional and virtual reality displaysOptical Engineering10.1117/1.OE.57.10.10510157:10(1)Online publication date: 15-Oct-2018
    • (2018)An Extended Depth-at-Field Volumetric Near-Eye Augmented Reality DisplayIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2018.286857024:11(2857-2866)Online publication date: Nov-2018
    • (2018)FocusAR: Auto-focus Augmented Reality Eyeglasses for both Real World and Virtual ImageryIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2018.286853224:11(2906-2916)Online publication date: Nov-2018
    • (2018)P‐148: A Continuous Variable Lens System to Address the Accommodation Problem in VR and 3D DisplaysSID Symposium Digest of Technical Papers10.1002/sdtp.1236949:1(1721-1724)Online publication date: 30-May-2018
    • (2017)Holographic near-eye displays for virtual and augmented realityACM Transactions on Graphics10.1145/3072959.307362436:4(1-16)Online publication date: 20-Jul-2017
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media