[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/1145768.1145785acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
Article

Solving sparse rational linear systems

Published: 09 July 2006 Publication History

Abstract

We propose a new algorithm to find a rational solution to a sparse system of linear equations over the integers. This algorithm is based on a p-adic lifting technique combined with the use of block matrices with structured blocks. It achieves a sub-cubic complexity in terms of machine operations subject to a conjecture on the effectiveness of certain sparse projections. A LinBox-based implementation of this algorithm is demonstrated, and emphasizes the practical benefits of this new method over the previous state of the art.

References

[1]
B. Beckermann and G. Labahn. A uniform approach for the fast, reliable computation of matrix-type padé approximants. SIAM J. Matrix Anal. Appl., 15:804--823, 1994.
[2]
D. Cantor and E. Kaltofen. Fast multiplication of polynomials over arbitrary algebras. Acta Informatica, 28:693--701, 1991.
[3]
L. Chen, W. Eberly, E. Kaltofen, B. D. Saunders, W. J. Turner, and G. Villard. Efficient matrix preconditioners for black box linear algebra. Linear Algebra and its Applications, 343--344:119--146, 2002.
[4]
Z. Chen and A. Storjohann. A BLAS based C library for exact linear algebra on integer matrices. In ISSAC'05: Proceedings of the 2005 international symposium on Symbolic and algebraic computation, pages 92--99, New York, NY, USA, 2005. ACM Press.
[5]
D. Coppersmith. Solving homogeneous linear equations over GF{2} via block Wiedemann algorithm. Mathematics of Computation, 62(205):333--350, Jan. 1994.
[6]
J. D. Dixon. Exact solution of linear equations using p-adic expansions. Numerische Mathematik, 40:137--141, 1982.
[7]
J.-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi, B. Hovinen, E. Kaltofen, B. D. Saunders, W. J. Turner, and G. Villard. LinBox: A generic library for exact linear algebra. In A. M. Cohen, X.-S. Gao, and N. Takayama, editors, Proceedings of the 2002 International Congress of Mathematical Software, Beijing, China, pages 40--50. World Scientific, Aug. 2002.
[8]
J.-G. Dumas, P. Giorgi, and C. Pernet. FFPACK: Finite field linear algebra package. In Gutierrez {14}, pages 63--74.
[9]
W. Eberly, M. Giesbrecht, and G. Villard. On computing the determinant and Smith form of an integer matrix. In Proceedings of the 41st Annual Symposium on Foundations of Computer Science, page 675. IEEE Computer Society, 2000.
[10]
W. Eberly and E. Kaltofen. On randomized Lanczos algorithms. In W. Küchlin, editor, Proc. 1997 Internat. Symp. Symbolic Algebraic Comput. (ISSAC'97), pages 176--183, New York, N. Y., 1997. ACM Press.
[11]
J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, New York, USA, 1999.
[12]
M. Giesbrecht. Efficient parallel solution of sparse systems of linear diophantine equations. In Parallel Symbolic Computation (PASCO'97), pages 1--10, Maui, Hawaii, July 1997.
[13]
P. Giorgi, C.-P. Jeannerod, and G. Villard. On the complexity of polynomial matrix computations. In R. Sendra, editor, Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, Philadelphia, Pennsylvania, USA, pages 135--142. ACM Press, New York, Aug. 2003.
[14]
J. Gutierrez, editor. ISSAC'2004. Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation, Santander, Spain. ACM Press, New York, July 2004.
[15]
G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford University Press, fifth edition, 1979.
[16]
E. Kaltofen. Analysis of Coppersmith's block Wiedemann algorithm for the parallel solution of sparse linear systems. Mathematics of Computation, 64(210):777--806, Apr. 1995.
[17]
E. Kaltofen and B. D. Saunders. On Wiedemann's method of solving sparse linear systems. In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC '91), volume 539 of LNCS, pages 29--38, Oct. 1991.
[18]
G. Labahn, D. K. Chio, and S. Cabay. The inverses of block hankel and block toeplitz matrices. SIAM J. Comput., 19(1):98--123, 1990.
[19]
R. T. Moenck and J. H. Carter. Approximate algorithms to derive exact solutions to systems of linear equations. In Proc. EUROSAM'79, volume 72 of Lecture Notes in Computer Science, pages 65--72, Berlin-Heidelberg-New York, 1979. Springer-Verlag.
[20]
T. Mulders and A. Storjohann. Diophantine linear system solving. In International Symposium on Symbolic and Algebraic Computation (ISSAC 99), pages 181--188, Vancouver, BC, Canada, July 1999.
[21]
T. Mulders and A. Storjohann. Certified dense linear system solving. Journal of Symbolic Computation, 37(4):485--510, 2004.
[22]
B. D. Saunders and Z. Wan. Smith normal form of dense integer matrices, fast algorithms into practice. In Gutierrez {14}.
[23]
A. Storjohann. The shifted number system for fast linear algebra on integer matrices. Journal of Complexity, 21(4):609--650, 2005.
[24]
W. J. Turner. Black Box Linear Algebra with Linbox Library. PhD thesis, North Carolina State University, May 2002.
[25]
G. Villard. A study of Coppersmith's block Wiedemann algorithm using matrix polynomials. Technical Report 975-IM, LMC/IMAG, Apr. 1997.
[26]
P. S. Wang. A p-adic algorithm for univariate partial fractions. In Proceedings of the fourth ACM symposium on Symbolic and algebraic computation, pages 212--217. ACM Press, 1981.
[27]
D. H. Wiedemann. Solving sparse linear equations over finite fields. IEEE Transactions on Information Theory, 32(1):54--62, Jan. 1986.

Cited By

View all
  • (2023)On Symmetric Factorizations of Hankel Matrices2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS57990.2023.00127(2081-2092)Online publication date: 6-Nov-2023
  • (2023)The Bit Complexity of Efficient Continuous Optimization2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS57990.2023.00125(2059-2070)Online publication date: 6-Nov-2023
  • (2022)CrystalNets.jl: Identification of Crystal TopologiesSciPost Chemistry10.21468/SciPostChem.1.2.0051:2Online publication date: 17-Jun-2022
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
ISSAC '06: Proceedings of the 2006 international symposium on Symbolic and algebraic computation
July 2006
374 pages
ISBN:1595932763
DOI:10.1145/1145768
  • General Chair:
  • Barry Trager
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 09 July 2006

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. linear system solving
  2. sparse integer matrix
  3. structured matrix

Qualifiers

  • Article

Conference

ISSAC06
Sponsor:

Acceptance Rates

Overall Acceptance Rate 395 of 838 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)10
  • Downloads (Last 6 weeks)3
Reflects downloads up to 31 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2023)On Symmetric Factorizations of Hankel Matrices2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS57990.2023.00127(2081-2092)Online publication date: 6-Nov-2023
  • (2023)The Bit Complexity of Efficient Continuous Optimization2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS57990.2023.00125(2059-2070)Online publication date: 6-Nov-2023
  • (2022)CrystalNets.jl: Identification of Crystal TopologiesSciPost Chemistry10.21468/SciPostChem.1.2.0051:2Online publication date: 17-Jun-2022
  • (2022)Matrix anti-concentration inequalities with applicationsProceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing10.1145/3519935.3520060(568-581)Online publication date: 9-Jun-2022
  • (2021)Solving sparse linear systems faster than matrix multiplicationProceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3458064.3458095(504-521)Online publication date: 10-Jan-2021
  • (2021)Cryptanalysis of the Privacy-Preserving Ride-Hailing Service TRACEProgress in Cryptology – INDOCRYPT 202110.1007/978-3-030-92518-5_21(462-484)Online publication date: 9-Dec-2021
  • (2017)Adaptive Bayesian sampling with Monte Carlo EMProceedings of the 31st International Conference on Neural Information Processing Systems10.5555/3294771.3294891(1256-1266)Online publication date: 4-Dec-2017
  • (2017)Checking strict positivity of Kraus maps is NP-hardInformation Processing Letters10.1016/j.ipl.2016.09.008118:C(35-43)Online publication date: 1-Feb-2017
  • (2016)False-Name-Proof Recommendations in Social NetworksProceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems10.5555/2936924.2936974(332-340)Online publication date: 9-May-2016
  • (2016)Probabilistic analysis of Wiedemann's algorithm for minimal polynomial computationJournal of Symbolic Computation10.1016/j.jsc.2015.06.00574:C(55-69)Online publication date: 1-May-2016
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media