[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Mesh editing with poisson-based gradient field manipulation

Published: 01 August 2004 Publication History

Abstract

In this paper, we introduce a novel approach to mesh editing with the Poisson equation as the theoretical foundation. The most distinctive feature of this approach is that it modifies the original mesh geometry implicitly through gradient field manipulation. Our approach can produce desirable and pleasing results for both global and local editing operations, such as deformation, object merging, and smoothing. With the help from a few novel interactive tools, these operations can be performed conveniently with a small amount of user interaction. Our technique has three key components, a basic mesh solver based on the Poisson equation, a gradient field manipulation scheme using local transforms, and a generalized boundary condition representation based on local frames. Experimental results indicate that our framework can outperform previous related mesh editing techniques.

Supplementary Material

MOV File (pps055.mov)

References

[1]
ABRAHAM, R., MARSDEN, J., AND RATIU, T. 1988. Manifolds, Tensor Analysis, and Applications, vol. 75. Springer. Applied Mathematical Sciences.
[2]
ALEXA, M., COHEN-OR, D., AND LEVIN, D. 2000. As-rigid-as-possible shape interpolation. In SIGGRAPH 2000 Conference Proceedings, 157--164.
[3]
BAJAJ, C., AND XU, G. 2003. Anisotropic diffusion on surfaces and functions on surfaces. ACM Trans. Graphics 22, 1, 4--32.
[4]
BARR, A. 1984. Global and local deformations of solid primitives. Computer Graphics(SIGGRAPH'84) 18, 3, 21--30.
[5]
BENDELS, G., AND KLEIN, R. 2003. Mesh forging: Editing of 3D-meshes using implicitly defined occluders. In Symposium on Geometry Processing.
[6]
BIERMANN, H., KRISTJANSSON, D., AND ZORIN, D. 2001. Approximate boolean operations on free-form solids. In Proceedings of SIGGRAPH, 185--194.
[7]
CHANG, Y.-K., AND ROCKWOOD, A. 1994. A generalized de casteljau approach to 3D free-form deformation. In Proc. SIGGRAPH'94, 257--260.
[8]
COQUILLART, S. 1990. Extended free-form deformation: A sculpturing tool for 3D geometric modeling. Computer Graphics(SIGGRAPH'90) 24, 4, 187--196.
[9]
DESBRUN, M., MEYER, M., SCHRÖDER, P., AND BARR, A. 2000. Anisotropic feature-preserving denoising of height fields and bivariate data. In Proc. Graphics Interface, 145--152.
[10]
FLEISHMAN, S., DRORI, I., AND COHEN-OR, D. 2003. Bilateral mesh denoising. ACM Trans. Graphics 22, 3, 950--953.
[11]
GUSKOV, I., SWELDENS, W., AND SCHRÖDER, P. 1999. Multiresolution signal processing for meshes. In Proc. SIGGRAPH'99, 325--334.
[12]
HSU, W., HUGHES, J., AND KAUFMAN, H. 1992. Direct manipulation of free-form deformations. In Proc. SIGGRAPH'92, 177--184.
[13]
JONES, T., DURAND, F., AND DESBRUN, M. 2003. Non-iterative, feature-preserving mesh smoothing. ACM Trans. Graphics 22, 3, 943--949.
[14]
KARNI, Z., AND GOTSMAN, C. 2000. Spectral compression of mesh geometry. In Proc. SIGGRAPH'00, 279--287.
[15]
KOBBELT, L., CAMPAGNA, S., VORSATZ, J., AND SEIDEL, H.-P. 1998. Interactive multi-resolution modeling on arbitrary meshes. In Proc. SIGGRAPH'98, 105--114.
[16]
KOBBELT, L., BAREUTHER, T., AND SEIDEL, H.-P. 2000. Multiresolution shape deformations for meshes with dynamic vertex connectivity. In Proc. Eurographics'2000.
[17]
LAZARUS, F., COQUILLART, S., AND JANCENE, P. 1994. Axial deformations: An intuitive deformation technique. Computer Aided Design 26, 8, 607--613.
[18]
LÉVY, B. 2003. Dual domain extrapolation. ACM TOG 22, 3, 364--369.
[19]
LLAMAS, I., KIM, B., GARGUS, J., ROSSIGNAC, J., AND SHAW, C. D. 2003. Twister: A space-warp operator for the two-handed editing of 3D shapes. ACM Trans. Graphics 22, 3, 663--668.
[20]
MACCRACKEN, R., AND JOY, K. 1996. Free-form deformations with lattices of arbitrary topology. In Proceedings of SIGGRAPH'96, 181--188.
[21]
MEYER, M., DESBRUN, M., SCHRÖDER, P., AND BARR, A. 2002. Discrete differential-geometry operators for triangulated 2-manifolds. In Proc. VisMath.
[22]
MILLIRON, T., JENSEN, R., BARZEL, R., AND FINKELSTEIN, A. 2002. A framework for geometric warps and deformations. ACM Trans. Graphics 21, 1, 20--51.
[23]
MUSETH, K., BREEN, D., WHITAKER, R., AND BARR, A. 2002. Level set surface editing operators. ACM Transactions on Graphics 21, 3, 330--338.
[24]
PAULY, M., KEISER, R., KOBBELT, L., AND GROSS, M. 2003. Shape modeling with point-sampled geometry. ACM Trans. Graphics 22, 3, 641--650.
[25]
PEREZ, P., GANGNET, M., AND BLAKE, A. 2003. Poisson image editing. ACM Trans. on Graphics 22, 313--318.
[26]
PERONA, P., AND MALIK, J. 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Patt. Anal. Mach. Intell. 12, 7, 629--639.
[27]
POLTHIER, K., AND PREUSS, E. 2000. Variational approach to vector field decomposition. In Proc. Eurographics Workshop on Scientific Visualization.
[28]
SEDERBERG, T., AND PARRY, S. 1986. Free-form deformation of solid geometric models. Computer Graphics(SIGGRAPH'86) 20, 4, 151--160.
[29]
SETHIAN, J. 1999. Level Set Methods and Fast Marching Methods. Cambridge University Press.
[30]
SINGH, K., AND FIUME, E. 1998. Wires: A geometric deformation technique. In Proc. SIGGRAPH'98, 405--414.
[31]
SINGH, K., 2004. personal communication.
[32]
SORKINE, O., COHEN-OR, D., LIPMAN, Y., ALEXA, M., RÖSSL, C., AND SEIDEL, H.-P. 2004. Laplacian surface editing. Tech. rep., March 2004.
[33]
STAM, J. 1999. Stable fluids. In SIGGRAPH 99 Conference Proceedings, 121--128.
[34]
TASDIZEN, T., WHITAKER, R., BURCHARD, P., AND OSHER, S. 2002. Geometric surface smoothing via anisotropic diffusion of normals. In Proceedings IEEE Visualization, 125--132.
[35]
TAUBIN, G. 1995. A signal processing approach to fair surface design. In Proc. SIGGRAPH'95, 351--358.
[36]
TAUBIN, G. 2001. Linear anisotropic mesh filtering. Tech. rep., IBM Research Report RC2213.
[37]
TOHLINE, J., 1999. Origin of the poisson equation. http://www.phys.lsu.edu/astro/H_Book.current/Context/PGE/poisson.origin.text.pdf.
[38]
TONG, Y., LOMBEYDA, S., HIRANI, A., AND DESBRUN, M. 2003. Discrete multiscale vector field decomposition. ACM Trans. Graphics 22, 3, 445--452.
[39]
YAGOU, H., OHTAKE, Y., AND BELYAEV, A. 2003. Mesh denoising via iterative alpha-trimming and nonlinear diffusion of normals with automatic thresholding. In Proc. Computer Graphics Intl.

Cited By

View all
  • (2024)A Hierarchical Architecture for Neural MaterialsComputer Graphics Forum10.1111/cgf.1511643:6Online publication date: 15-May-2024
  • (2024)Semi-Supervised 3D Shape Segmentation via Self RefiningIEEE Transactions on Image Processing10.1109/TIP.2024.337420033(2044-2057)Online publication date: 12-Mar-2024
  • (2024)SC-GS: Sparse-Controlled Gaussian Splatting for Editable Dynamic Scenes2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.00404(4220-4230)Online publication date: 16-Jun-2024
  • Show More Cited By

Index Terms

  1. Mesh editing with poisson-based gradient field manipulation

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 23, Issue 3
    August 2004
    684 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/1015706
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 01 August 2004
    Published in TOG Volume 23, Issue 3

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Local Transform Propagation
    2. Mesh Deformation
    3. Mesh Filtering
    4. Object Merging
    5. Poisson Equation

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)57
    • Downloads (Last 6 weeks)9
    Reflects downloads up to 21 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)A Hierarchical Architecture for Neural MaterialsComputer Graphics Forum10.1111/cgf.1511643:6Online publication date: 15-May-2024
    • (2024)Semi-Supervised 3D Shape Segmentation via Self RefiningIEEE Transactions on Image Processing10.1109/TIP.2024.337420033(2044-2057)Online publication date: 12-Mar-2024
    • (2024)SC-GS: Sparse-Controlled Gaussian Splatting for Editable Dynamic Scenes2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.00404(4220-4230)Online publication date: 16-Jun-2024
    • (2024)Correspondence-Free Online Human Motion Retargeting2024 International Conference on 3D Vision (3DV)10.1109/3DV62453.2024.00032(707-716)Online publication date: 18-Mar-2024
    • (2024)Variational sparse diffusion and its application in mesh processingEngineering Computations10.1108/EC-07-2023-039041:2(289-306)Online publication date: 4-Mar-2024
    • (2024)Temporal Residual Jacobians for Rig-Free Motion TransferComputer Vision – ECCV 202410.1007/978-3-031-73636-0_6(93-109)Online publication date: 29-Sep-2024
    • (2023)Geometric and Learning-Based Mesh Denoising: A Comprehensive SurveyACM Transactions on Multimedia Computing, Communications, and Applications10.1145/362509820:3(1-28)Online publication date: 10-Nov-2023
    • (2023)Slippage-Preserving Reshaping of Human-Made 3D ContentACM Transactions on Graphics10.1145/361839142:6(1-18)Online publication date: 5-Dec-2023
    • (2023)Assessing geometrical uncertainties in geological interface models using Markov chain Monte Carlo sampling via abstract graphTectonophysics10.1016/j.tecto.2023.230032864(230032)Online publication date: Oct-2023
    • (2022)GeoStamp: Detail Transfer Based on Mean Curvature FieldMathematics10.3390/math1003050010:3(500)Online publication date: 4-Feb-2022
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media