[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article
Free access

Complexity of approximation algorithms for combinatorial problems: a survey

Published: 01 September 1980 Publication History

Abstract

In this survey we examine recent results on the complexity of approximation algorithms which have appeared in Russian.

References

[1]
L. G. Babat, "Linear Functions on the N-dimenaional Unit Cube", Dokl. Akad. Nauk SSSR 222, 761--762 (1975), (Russian).
[2]
L. G. Babat, "Approximate Computation of Linear Functions on Vertices of the Unit N-dimensional Cube", in Studies in Discrets Optimization, pp. 156--169, A. A. Fridman (ed.) Nauka, Moscow, 1976 (Russian).
[3]
L. G. Babat, "A Fixed-Charge Problem", Izv. Akad. Nauk SSSR, Techn. Kibernet. 3, 25--31 (1978) (Russian).
[4]
I. S. Belov and Stolin Ja. I., "An Algorithm for a Flow-shop Scheduling Problem", in Mathematical Economics and Functional Analysis, pp. 218--257, B. S. Mityagin (ed.), Nauka, Moscow, 1974 (Russian).
[5]
S. A. Cook, "The Complexity of Theorem Proving Procedures" Proc. 3-rd Annual ACM Symposium on the Theory of Computing, pp. 151--159, Shaker Heights, Ohio, 1971.
[6]
G. Cornuejols, M. L. Fisher and G. L. Nemhauser, "Location of Bank Accounts to Optimize Floats", Manag. Sci. 23, 789--810, (1977).
[7]
E. A. Dinic, "A Boolean Programming Problem", in Soft-Ware Systems for Optimal Planning Problems, Proc. V All-Union Symposium pp. 190--191, Central Economic and Mathematical Institute, Moscow, 1978, (Russian).
[8]
E. A. Dinic, A. V. Karzanov, "A Boolean Optimization Problem with Special Constraints". Moscow, All-Union Institute of System Research, 1978 (Russian).
[9]
Ju. Ju. Finkel' stein, Approximation Methods and Applied Discrete Programming Problems, Nauka, Moscow, (1976) (Russian).
[10]
Ju. Ju. Finkel' stein, "An e-approach to the Multidimensional Knapsack Problem", Zur. Vychisl. Mat. i Mat. Fiz. 17, 1040--1042, (1977) (Russian).
[11]
A. A. Fridman, M. A. Frumkin, Ju. I Hmelevskii and E. V. Levner, "Study of Algorithm Efficiency for Discrete and Combinatorial Problems. Theory of Problem Reducibility and Universal Problems". Report No GR-76060393, Moscow, Central Economic and Mathematical Institute, USSR Academy of Sciences. 1976 (Russian).
[12]
A. A. Fridman "New Directions in Discrete Optimization", Ekon. i Mat. Metody 13, 1115--1131 (1977) (Russian).
[13]
M. R. Garey, R. L. Graham and D. S. Johnson, "Performance Guarantees for Scheduling Algorithms", Oper. Res. 26, 3--21, (1978).
[14]
M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness, W. H. Freeman, San Francisco, 1979.
[15]
G. V. Gens and E. V. Levner, "On Approximation Algorithms for Universal Scheduling Problems", Izv. Akad. Nauk SSSR, Tehn. Kibernet. 6, 38--43 (1978) (Russian).
[16]
G. V. Gens and E. V. Levner, "Computational Complexity of Approximation Algorithms for Combinatorial Problems", Proc. 8th Symposium on Mathematical Foundations of Computer Science, Olomouc, Czechoslovakia, (1979), Lecture Notes in Computer Science, vol. 74. Springer-Verlag. Berlin-New York, 1979.
[17]
E. H. Gimadi, N. I. Glebov and V. A. Perepelica, "Algorithms with Performance Guarantees for Discrete Optimization Problems". Problems of Cybernetics, book 31, Nauka, Moscow, 1976 (Russian).
[18]
R. L. Graham, E. L. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan, "Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey", Annals of Discrete Mathematics, 5 (1978).
[19]
D. Yu. Grigoryev, "An Application of Separability and Independence Notions for Proving Lower Bounds of Circuit Complexity", in Studies on Constructive Mathematics and Mathematical Logic, pp. 38--48, Yu. V. Matiyasevich and A. O. Slisenko (eds.). Zap. nauchm. seminarov Leningrad. otd. Mat. Inst. AN SSSR, 60, Nauka, Leningrad, 1976 (Russian).
[20]
O. H. Ibarra, C. E. Kim "Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems", J. ACM., 22, 463--468, (1975).
[21]
D. S. Johnson, "Approximation algorithms for Combinatorial Problems", J. Comput. Systems Sci., 9, 256--278 (1974).
[22]
R. M. Karp, "Reducibility among Combinatorial Problems", in "Complexity of Computer Computations", pp. 85--109, R. E. Miller and T. W. Thatcher (eds.), Plenum Press, New York, 1972.
[23]
R. M. Karp, "The Probabilistic Analysis of Some Combinatorial Search Algorithms", in Algorithms and Complexity, pp. 1--19, J. B. Traub (ed.), Academic Press, New York, 1976.
[24]
M. T. Kaufman, "An Almost-optimal Algorithm for the Assembly Line Scheduling Problem", LEEE Trans. on Comp., C-23, (1974), 1169--1174.
[25]
L. G. Khachiyan, "A Polynomial Algorithm for the Linear programming Problem", Dokl. Akad. Nauk SSSR, 244, No 5 (1979) (Russian).
[26]
V. K. Korobkov, R. E. Krichevskii, "Algorithms for the Traveling Salesman Problem", in Mathematical Models and Methods of Optimal Planning, pp. 106--108, Nauka, Novosibirsk, 1966 (Russian).
[27]
E. L. Lawler, "Fast Approximation Algorithms for Knapsack Problem", Memorandum No UCB/ERL M 77/45, Electronics Research Laboratory, University of California, Berkeley, June 1977.
[28]
V. K. Leont'ev, "Study of an Algorithm for Solving Traveling Salesman Problem", Zur. Vych.Mat. i Mat Fiz., 13, 1228--1236 (1973) (Russian).
[29]
V. K. Leont'ev, "Discrete Extremal Problems", in Theory of Probability. Mathematical Statistics. Theoretical Cybernetics, pp. 39--101, R. V. Gamkrelidze (Ed.) VINITI, Moscow, 1979, (Russian).
[30]
L. A. Levin, "Universal Problems of Combinatorial Search", Problemy Peredachy Informacii, 9, 115--116, (1973) (Russian).
[31]
E. V. Levner and G. V. Gens, "On ε-Algorithms for Universal Discrete Problems", Proc. IV All-Union Conf. on Problems of Theoret. Cybern., pp. 95--96, Inst. Mat., Novosibirsk, (1977).
[32]
E. V. Levner, and G. V. Gens, Discrete Optimization Problems and Efficient Approximation Algorithms, Moscow, Central Economic and Mathem. Institute, 1978 (Russian).
[33]
E. V. Levner and G. V. Gens. "Fast Approximation Algorithms for knapsack type problems", Proc. IX Conf. IFIP on Optimization Techniques, Warsaw, September 1979, Lecture Notes in Computer Science, Springer-Verlag, Berlin - New York. 1979.
[34]
E. M. Livshic, "Analysis of Algorithms for Network Model Optimization", Ekon. i Mat. Metody, 4, 768--775 (1968) (Russian).
[35]
E. M. Livashic, "Performance Bounds for Approximate Solutions of Optimization Network Problems" in Proc. I Winter School on Math. Programming, book 3, pp. 477--497, Central Economic and Mathem. Institute, Moscow, 1969 (Russian).
[36]
E. M. Livshic and V. I. Rublineckii, "On Relative Complexity of Discrete Optimization Problems" in Vych. Mat i Vych. Teh. 3, 78--95, Kharkov, 1972 (Russian).
[37]
R. G. Nigmatullin, "The Fastest Descent Method for Covering Problems", Proc. Symposium on Questions of Precision and Efficiency of Computer Algorithms, book 5, 116--126, Kiev, 1969 (Russian).
[38]
R. G. Nigmatullin, "Complexity of Approximate Solution of Combinatorial Problems", Dokl. Akad. Nauk SSSR, 224, No 2, (1975), (Russian).
[39]
R. G. Nigmatullin, "On Approximate Algorithms with Bounded Absolute Error for Discrete Extremal Problems", Kybernetika, 1, 96--101, (1978) (Russian).
[40]
D. J. Rosenkrantz, R. E. Stearns and P. M. Lewis, "Approximate Algorithms for the Traveling Salesman Problem", Proc 15th Annual IEEE Symp. on Switching and Automata Theory. pp. 33--42, (1974).
[41]
V. I. Rublineckii, "On Procedures with Performance Guarantees for Traveling Salesman Problem", Vych Mat. i Vych Tehn. 4, 18--23, Kharkov, 1973 (Russian).
[42]
S. Sahni, "Algorithms for Scheduling Independent Tasks", J. ACM, 23, 114--127, (1976).
[43]
S. Sahni and T. Gonzales "p - complete Approximation Problems", J. ACM, 23, 555--565 (1976).
[44]
S. Sahni and E. Horowitz. Combinatorial Problems: Reducibility and Approximation, Oper. Res. 26, 718--759 (1978).
[45]
S. V. Sevost'yanov. "On Asymtolic Approach to Scheduling Problems, in Upravl. Systemi (upravl. procesi), v. 14, Novosibirsk, Nauka, 1975, pp. 40--51. (Russian).
[46]
S. B. Sevost'yanov, "On Approximate Solution of Scheduling Problems", in Metody Discret. Analyza v Synt. Uprav. System, 32, (1978), Novosibirsk, 66--75 (Russian).
[47]
V. G. Vizing, "The Object Function Values in Sequencing Problems Dominated by an Average Value", Kibernetika, 5, 76--78, (1973), (Russian).
[48]
D. B. Yudin, A. S. Nemirovskii, "Bounds for Information Complexity of Mathematical Programming Problems", Ekonom, i Mat. Metody. 12, 123--142, (1976) (Russian).

Cited By

View all
  • (2024)Aerial Base Station Placement via Propagation Radio MapsIEEE Transactions on Communications10.1109/TCOMM.2024.338311172:9(5349-5364)Online publication date: Sep-2024
  • (2024)Adaptive Pricing and Online Scheduling for Distributed Machine Learning JobsIEEE Internet of Things Journal10.1109/JIOT.2023.333675711:7(12966-12983)Online publication date: 1-Apr-2024
  • (2024)An FPTAS for Connectivity InterdictionInteger Programming and Combinatorial Optimization10.1007/978-3-031-59835-7_16(210-223)Online publication date: 3-Jul-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM SIGACT News
ACM SIGACT News  Volume 12, Issue 3
Fall 1980
65 pages
ISSN:0163-5700
DOI:10.1145/1008861
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 September 1980
Published in SIGACT Volume 12, Issue 3

Check for updates

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)112
  • Downloads (Last 6 weeks)14
Reflects downloads up to 10 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Aerial Base Station Placement via Propagation Radio MapsIEEE Transactions on Communications10.1109/TCOMM.2024.338311172:9(5349-5364)Online publication date: Sep-2024
  • (2024)Adaptive Pricing and Online Scheduling for Distributed Machine Learning JobsIEEE Internet of Things Journal10.1109/JIOT.2023.333675711:7(12966-12983)Online publication date: 1-Apr-2024
  • (2024)An FPTAS for Connectivity InterdictionInteger Programming and Combinatorial Optimization10.1007/978-3-031-59835-7_16(210-223)Online publication date: 3-Jul-2024
  • (2023)Set-Based Particle Swarm Optimisation: A ReviewMathematics10.3390/math1113298011:13(2980)Online publication date: 4-Jul-2023
  • (2023)Online Scheduling Algorithm for Heterogeneous Distributed Machine Learning JobsIEEE Transactions on Cloud Computing10.1109/TCC.2022.314315311:2(1514-1529)Online publication date: 1-Apr-2023
  • (2023)Multi-Robot Coordination and Cooperation with Task Precedence Relationships2023 IEEE International Conference on Robotics and Automation (ICRA)10.1109/ICRA48891.2023.10160998(5800-5806)Online publication date: 29-May-2023
  • (2022)Online Scheduling of Distributed Machine Learning Jobs for Incentivizing Sharing in Multi-Tenant SystemsIEEE Transactions on Computers10.1109/TC.2022.3174566(1-1)Online publication date: 2022
  • (2022)Dynamic service placement and request scheduling for edge networksComputer Networks10.1016/j.comnet.2022.108997213(108997)Online publication date: Aug-2022
  • (2021)Leveraging Multiplexing Gain in Network Slice BundlesIEEE Transactions on Network Science and Engineering10.1109/TNSE.2020.30313478:1(149-162)Online publication date: 1-Jan-2021
  • (2020)Online scheduling of heterogeneous distributed machine learning jobsProceedings of the Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing10.1145/3397166.3409128(111-120)Online publication date: 11-Oct-2020
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media