[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/1005285.1005294acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
Article

Complexity issues in bivariate polynomial factorization

Published: 04 July 2004 Publication History

Abstract

Many polynomial factorization algorithms rely on Hensel lifting and factor recombination. For bivariate polynomials we show that lifting the factors up to a precision linear in the total degree of the polynomial to be factored is sufficient to deduce the recombination by linear algebra, using trace recombination. Then, the total cost of the lifting and the recombination stage is subquadratic in the size of the dense representation of the input polynomial. Lifting is often the practical bottleneck of this method: we propose an algorithm based on a faster multi-moduli computation for univariate polynomials and show that it saves a constant factor compared to the classical multifactor lifting algorithm.

References

[1]
K. Belabas, M. van Hoeij, J. Klüuners, and A. Steel. Factoring polynomials over global fields. 2003.
[2]
L. Bernardin. On bivariate Hensel lifting and its parallelization. In ISSAC'98, pages 96--100. ACM Press, 1998.
[3]
D. J. Bernstein. Fast multiplication and its applications. Manuscript, 2003.
[4]
A. Bostan, G. Lecerf, and É. Schost. Tellegen's principle into practice. In ISSAC'03, pages 37--44. ACM Press, 2003.
[5]
A. Bostan, B. Salvy, and É. Schost. Fast algorithms for zero-dimensional polynomial systems using duality. AAECC, 14(4):239--272, 2003.
[6]
P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory. Springer, Berlin, 1997.
[7]
S. Gao. Factoring multivariate polynomials via partial differential equations. Math. Comp., 72:801--822, 2003.
[8]
J. von zur Gathen. Hensel and Newton methods in valuation rings. Math. Comp., 42(166):637--661, 1984.
[9]
J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University Press, 1st edition, 1999.
[10]
J. von zur Gathen and E. Kaltofen. Factoring sparse multivariate polynomials. J. Comput. System Sci., 31:265--287, 1985.
[11]
J. von zur Gathen and E. Kaltofen. Factorization of multivariate polynomials over finite fields. Math. Comp., 45:251--261, 1985.
[12]
G. Hanrot, M. Quercia, and P. Zimmermann. The Middle Product Algorithm, I. Appl. Algebra Engrg. Comm. Comput., 14(6):415--438, 2004.
[13]
M. van Hoeij. Factoring polynomials and the knapsack problem. J. Number Theory, 95(2):167--189, 2002.
[14]
E. Kaltofen. Polynomial factorization. In B. Buchberger, G. Collins, and R. Loos, editors, Computer algebra, pages 95--113. Springer, 1982.
[15]
E. Kaltofen. Sparse Hensel lifting. In EUROCAL'85, Vol. 2 (Linz, 1985), volume 204 of LNCS, pages 4--17. Springer, Berlin, 1985.
[16]
E. Kaltofen. Factorization of polynomials given by straight-line programs. In S. Micali, editor, Randomness and Computation, volume 5 of Advances in Computing Research, pages 375--412. JAI, 1989.
[17]
E. Kaltofen. Polynomial factorization: a success story. In ISSAC'03, pages 3--4. ACM Press, 2003.
[18]
E. Kaltofen and B. Trager. Computing with polynomials given by black boxes for their evaluations: greatest common divisors, factorization, separations of enumerators and denominators. J. Symb. Comput., 9(3):301--320, 1990.
[19]
G. Lecerf. Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers. J. Complexity, 19(4):564--596, 2003.
[20]
A. K. Lenstra. Factoring multivariate polynomials over finite fields. J. Comput. System Sci., 2:235--248, 1985.
[21]
D. R. Musser. Multivariate polynomial factorization. J. Assoc. Comput. Mach., 22:291--308, 1975.
[22]
K. Nagasaka and T. Sasaki. Approximate multivariate polynomial factorization and its time complexity, 1998. preprint.
[23]
M. Noro and K. Yokoyama. Yet another practical implementation of polynomial factorization over finite fields. In ISSAC'02, pages 200--206. ACM Press, 2002.
[24]
T. Sasaki, T. Saito, and T. Hilano. Analysis of approximate factorization algorithm. I. Japan J. Indust. Appl. Math., 9(3):351--368, 1992.
[25]
T. Sasaki and M. Sasaki. A unified method for multivariate polynomial factorizations. Japan J. Indust. Appl. Math., 10(1):21--39, 1993.
[26]
T. Sasaki, M. Suzuki, M. Kolář, and M. Sasaki. Approximate factorization of multivariate polynomials and absolute irreducibility testing. Japan J. Indust. Appl. Math., 8(3):357--375, 1991.
[27]
V. Shoup. NTL: A library for doing number theory. http://www.shoup.net.
[28]
A. Storjohann. Algorithms for matrix canonical forms. PhD thesis, ETH, Zürich, 2000.
[29]
P. S. Wang. An improved multivariate polynomial factoring algorithm. Math. Comp., 32(144):1215--1231, 1978.
[30]
P. S. Wang and L. P. Rothschild. Factoring multivariate polynomials over the integers. Math. Comp., 29:935--950, 1975.
[31]
D. Y. Y. Yun. Uniform bounds for a class of algebraic mappings. SIAM J. on Computing, 8:348--356, 1979.
[32]
H. Zassenhaus. On Hensel factorization I. J. Number Theory, 1(1):291--311, 1969.
[33]
H. Zassenhaus. A remark on the Hensel factorization method. Math. Comp., 32(141):287--292, 1978.
[34]
R. Zippel. Effective Polynomial Computation. Kluwer Academic Publishers, 1993.

Cited By

View all
  • (2024)Plane curve germs and contact factorizationApplicable Algebra in Engineering, Communication and Computing10.1007/s00200-024-00669-zOnline publication date: 30-Nov-2024
  • (2023)New Sparse Multivariate Polynomial Factorization Algorithms over IntegersProceedings of the 2023 International Symposium on Symbolic and Algebraic Computation10.1145/3597066.3597087(315-324)Online publication date: 24-Jul-2023
  • (2020)Fast Hermite interpolation and evaluation over finite fields of characteristic twoJournal of Symbolic Computation10.1016/j.jsc.2019.07.01498:C(270-283)Online publication date: 1-May-2020
  • Show More Cited By

Index Terms

  1. Complexity issues in bivariate polynomial factorization

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ISSAC '04: Proceedings of the 2004 international symposium on Symbolic and algebraic computation
    July 2004
    334 pages
    ISBN:158113827X
    DOI:10.1145/1005285
    • General Chair:
    • Josef Schicho
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 04 July 2004

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Hensel lifting
    2. computer algebra
    3. multi-moduli
    4. polynomial factorization
    5. tellegen
    6. transposition principle

    Qualifiers

    • Article

    Conference

    ISSAC04
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 395 of 838 submissions, 47%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)8
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 14 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Plane curve germs and contact factorizationApplicable Algebra in Engineering, Communication and Computing10.1007/s00200-024-00669-zOnline publication date: 30-Nov-2024
    • (2023)New Sparse Multivariate Polynomial Factorization Algorithms over IntegersProceedings of the 2023 International Symposium on Symbolic and Algebraic Computation10.1145/3597066.3597087(315-324)Online publication date: 24-Jul-2023
    • (2020)Fast Hermite interpolation and evaluation over finite fields of characteristic twoJournal of Symbolic Computation10.1016/j.jsc.2019.07.01498:C(270-283)Online publication date: 1-May-2020
    • (2019)Linear Hensel Lifting for Fp[x,y] and Z[x] with Cubic CostProceedings of the 2019 International Symposium on Symbolic and Algebraic Computation10.1145/3326229.3326242(299-306)Online publication date: 8-Jul-2019
    • (2019)Symbolic Computations of First Integrals for Polynomial Vector FieldsFoundations of Computational Mathematics10.1007/s10208-019-09437-9Online publication date: 27-Sep-2019
    • (2017)Functional Decomposition Using Principal SubfieldsProceedings of the 2017 ACM International Symposium on Symbolic and Algebraic Computation10.1145/3087604.3087608(421-428)Online publication date: 23-Jul-2017
    • (2017)Bivariate Factorization Using a Critical FiberFoundations of Computational Mathematics10.1007/s10208-016-9318-817:5(1219-1263)Online publication date: 1-Oct-2017
    • (2014)A polynomial time algorithm for computing all minimal decompositions of a polynomialACM Communications in Computer Algebra10.1145/2644288.264429248:1/2(13-23)Online publication date: 10-Jul-2014
    • (2014)Sparse bivariate polynomial factorizationScience China Mathematics10.1007/s11425-014-4850-y57:10(2123-2142)Online publication date: 26-Jun-2014
    • (2014)Factoring Sparse Bivariate Polynomials Using the Priority QueueComputer Algebra in Scientific Computing10.1007/978-3-319-10515-4_28(388-402)Online publication date: 2014
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media