[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Dynamics of a new hyperchaotic system and multistability

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, a new 4D hyperchaotic system is proposed. By boosting a trigonometric function into a single variable, the system produces different multistable regions. Bifurcation diagrams and cross-section of basins can quantify the presence of coexisting attractors. Furthermore, a nonlinear controller is implemented, which can shift the coexisting attractor in the negative region in the phase space and merge it to the positive region, for a threshold value of the control parameter. It has also been noticed that complexity increases with the addition of the nonlinear controller, when the coexisting attractors shift to the positive region in the phase space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shaobo He, Kehui Sun, Santo Banerjee, Eur. Phys. J. Plus 131, 254 (2016)

    Article  Google Scholar 

  2. S.K. Palit, N.A.A. Fataf, M.R.M. Said, S. Mukherjee, S. Banerjee, Eur. Phys. J. ST 226, 2219 (2017)

    Article  Google Scholar 

  3. Hayder Natiq, Santo Banerjee, M.R.M. Said, Eur. Phys. J. ST 228, 185 (2019)

    Article  Google Scholar 

  4. Papri Saha, Santo Banerjee, A. Roy Chowdhury, Phys. Lett. A 326, 133 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  5. N.A.A. Fataf, S.K. Palit, S. Mukherjee, M.R.M. Said, D.H. Son, S. Banerjee, Eur. Phys. J. Plus 132, 492 (2017)

    Article  Google Scholar 

  6. Santo Banerjee (Editor), Chaos Synchronization and Cryptography for Secure Communications: Applications for Encryption (IGI Global, 2010)

  7. H. Natiq, N.M.G. Al-Saidi, M.R.M. Said, A. Kilicman, Eur. Phys. J. Plus 133, 6 (2018)

    Article  Google Scholar 

  8. Guanrong Chen, Xiaoning Dong, Control of Chaos: A survey, in Proceedings of 32nd IEEE Conference on Decision and Control (IEEE, 1993)

  9. Sayan Mukherjee et al., Physica A 439, 93 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. David Angeli, James E. Ferrell, Eduardo D. Sontag, Proc. Natl. Acad. Sci. 101, 1822 (2004)

    Article  ADS  Google Scholar 

  11. F.T. Arecchi, R. Meucci, G. Puccioni, J. Tredicce, Phys. Rev. Lett. 49, 1217 (1982)

    Article  ADS  Google Scholar 

  12. Saverio Morfu, Brice Nofiele, Patrick Marqui, Phys. Lett. A 367, 192 (2007)

    Article  ADS  Google Scholar 

  13. Chunbiao Li, Julien Clinton Sprott, Int. J. Bifurc. Chaos 24, 1450131 (2014)

    Article  Google Scholar 

  14. C. Li, J.C. Sprott, W. Hu, Y. Xu, Int. J. Bifurc. Chaos 27, 1750160 (2017)

    Article  Google Scholar 

  15. H. Natiq, M.R.M. Said, M.R.K. Ariffin, S. He, L. Rondoni, S. Banerjee, Eur. Phys. J. Plus 133, 557 (2018)

    Article  Google Scholar 

  16. H. Natiq, M. Said, N. Al-Saidi, A. Kilicman, Entropy 21, 34 (2019)

    Article  ADS  Google Scholar 

  17. M. Wang, Y. Deng, X. Liao, Z. Li, M. Ma, Y. Zeng, Int. J. Non-Linear Mech. 111, 149 (2019)

    Article  ADS  Google Scholar 

  18. H. Natiq, S. Banerjee, S. He, M.R.M. Said, A. Kilicman, Chaos, Solitons Fractals 114, 506 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. Hayder Natiq et al., Chaos 29, 011103 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  20. Guanrong Chen, Chaotification via feedback: the discrete case, in Chaos Control (Springer, Berlin, Heidelberg, 2003) pp. 159--177

  21. Hongjie Yu, Yanzhu Liu, Phys. Lett. A 314, 292 (2003)

    Article  MathSciNet  Google Scholar 

  22. David J. Christini, James J. Collins, Phys. Rev. E 53, R49 (1996)

    Article  ADS  Google Scholar 

  23. Guanrong Chen, Tetsushi Ueta, Int. J. Bifurc. Chaos 9, 1465 (1999)

    Article  Google Scholar 

  24. A. Chen, J. Lu, J. Lü, S. Yu, Physica A 364, 103 (2006)

    Article  ADS  Google Scholar 

  25. Guoyuan Qi, Guanrong Chen, Phys. Lett. A 352, 386 (2006)

    Article  Google Scholar 

  26. H. Natiq, S. Banerjee, A.P. Misra, M.R.M. Said, Chaos, Solitons Fractals 122, 58 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  27. P.R. Sharma, M.D. Shrimali, A. Prasad, N.V. Kuznetsov, G.A. Leonov, Int. J. Bifurc. Chaos 25, 1550061 (2015)

    Article  Google Scholar 

  28. Joshua S. Richman, J. Randall Moorman, Am. J. Physiol. 278, H2039 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santo Banerjee.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdul Rahim, M.F., Natiq, H., Fataf, N.A.A. et al. Dynamics of a new hyperchaotic system and multistability. Eur. Phys. J. Plus 134, 499 (2019). https://doi.org/10.1140/epjp/i2019-13005-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-13005-5

Navigation