Abstract.
In this paper, a new 3D chaotic system with trigonometric function term as a nonlinear controller is proposed. Depending on the nonlinear controller and the value of the parameters, the proposed system exhibits self-excited attractor with an unstable equilibrium, and hidden attractor with no equilibrium or a stable equilibrium. In addition, the unusual and striking dynamic behavior of the coexistence of self-excited chaotic with periodic attractors, two self-excited chaotic attractors with periodic attractor, three periodic attractors, hidden chaotic with point attractors, two hidden chaotic attractors, and four hidden chaotic attractors are explored by selecting appropriate initial values. Consequently, the proposed system has high sensitivity to its initial values and parameters, hence it can be applied in chaos-based cryptographic applications. Thus, the non-periodicity of coexisting attractors of the system is investigated through Lyapunov exponents and Sample Entropy. To demonstrate the performance of the system in real applications, we construct a pseudo-random number generator (PRNG) based on the hidden attractor case. The randomness test results show that the generated PRNG pass all the statistical tests.
Similar content being viewed by others
References
E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963)
O.E. Rössler, Phys. Lett. A 57, 397 (1976)
J.C. Sprott, Phys. Rev. E 50, R647 (1994)
G. Chen, T. Ueta, Int. J. Bifurc. Chaos 9, 1465 (1999)
S. Banerjee, S.K. Palit, S. Mukherjee, M. Ariffin, L. Rondoni, Chaos 3, 033105 (2016)
L. Rondoni, M.R.K. Ariffin, R. Varatharajoo, S. Mukherjee, S.K. Palit, S. Banerjee, Opt. Commun. 387, 257 (2017)
S. Theesar, Jeeva Sathya, Santo Banerjee, P. Balasubramaniam, Nonlinear Dyn. 70, 1977 (2012)
Papri Saha, Santo Banerjee, A. Roy Chowdhury, Phys. Lett. A 326, 133 (2004)
G.A. Leonov, N.V. Kuznetsov, Int. J. Bifurc. Chaos 23, 1330002 (2013)
Alexander N. Pisarchik, Ulrike Feudel, Phys. Rep. 540, 167 (2014)
F.T. Arecchi, R. Meucci, G. Puccioni, J. Tredicce, Phys. Rev. Lett. 49, 1217 (1982)
J.C. Sprott, X. Wang, G. Chen, Int. J. Bifurc. Chaos 23, 1350093 (2013)
C. Li, J.C. Sprott, Int. J. Bifurc. Chaos 24, 1450131 (2014)
J. Kengne, Z.T. Njitacke, H.B. Fotsin, Nonlinear Dyn. 83, 751 (2016)
G. Wang, F. Yuan, G. Chen, Y. Zhang, Chaos 28, 013125 (2018)
Guanrong Chen, Chaotification via feedback: the discrete case, in Chaos Control (Springer, Berlin, Heidelberg, 2003) p. 159
Hongjie, Yu, Liu Yanzhu, Phys. Lett. A 314, 292 (2003)
J.C. Sprott, S. Jafari, A.J.M. Khalaf, T. Kapitaniak, Eur. Phys. J. ST 226, 1979 (2017)
Sajad Jafari, Viet-Thanh Pham, Tomasz Kapitaniak, Int. J. Bifurc. Chaos 26, 1650031 (2016)
Gonzalo Alvarez, Shujun Li, Int. J. Bifurc. Chaos 16, 2129 (2006)
Santo Banerjee, Chaos, Solitons Fractals 42, 745 (2009)
Santo Banerjee, Sumona Mukhopadhyay, Lamberto Rondoni, Opt. Lasers Eng. 50, 950 (2012)
H. Natiq, N. Al-Saidi, M.R.M. Said, A. Kilicman, Eur. Phys. J. Plus 133, 6 (2018)
H. Natiq, S. Banerjee, S. He, M.R.M. Said, A. Kilicman, Chaos, Solitons Fractals 114, 506 (2018)
Zhongyun Hua, Yicong Zhou, Inf. Sci. 339, 237 (2016)
Santo Banerjee, D. Ghosh, A. Roy Chowdhury, Phys. Scr. 78, 015010 (2008)
G.C. Layek, An Introduction to Dynamical Systems and Chaos (Springer, New Delhi, 2015)
C.K. Volos, I.M. Kyprianidis, I.N. Stouboulos, Int. J. Multime. Intell. Secur. 1, 320 (2010)
Steven M. Pincus, Proc. Natl. Acad. Sci. 88, 2297 (1991)
M. Costa, C.K. Peng, A.L. Goldberger, J.M. Hausdorff, Physica A 330, 53 (2003)
J.S. Richman, J.R. Moorman, Am. J. Physiol.-Heart Circ. Physiol. 278, H2039 (2000)
F. Kaffashi, R. Foglyano, C.G. Wilson, K.A. Loparo, Phys. D 237, 3069 (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Natiq, H., Said, M.R.M., Ariffin, M.R.K. et al. Self-excited and hidden attractors in a novel chaotic system with complicated multistability. Eur. Phys. J. Plus 133, 557 (2018). https://doi.org/10.1140/epjp/i2018-12360-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/i2018-12360-y